基于高光谱数据的汉江中下游典型河段水体悬浮物遥感反演

肖潇, 徐坚, 赵登忠, 程学军, 李国忠, 赵保成, 徐健

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (11) : 141-148.

PDF(1931 KB)
PDF(1931 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (11) : 141-148. DOI: 10.11988/ckyyb.20191003
信息技术应用

基于高光谱数据的汉江中下游典型河段水体悬浮物遥感反演

  • 肖潇1, 徐坚1,2, 赵登忠1, 程学军1, 李国忠1, 赵保成1, 徐健1
作者信息 +

Remote Sensing Retrieval of Total Suspended Solids Concentration for Typical Reach of Hanjiang River Using Hyperspectral Data

  • XIAO Xiao1, XU Jian1,2, ZHAO Deng-zhong1, CHENG Xue-jun1, LI Guo-zhong1, ZHAO Bao-cheng1, XU Jian1
Author information +
文章历史 +

摘要

选择汉江中下游典型河段作为研究区域,利用2012—2013年实测水质数据及高光谱数据,基于有效信息变量筛选和神经网络算法构建研究区水体悬浮物浓度高光谱反演模型,分析评价了模型性能与估测效果,讨论了研究区水体悬浮物浓度分布特征。研究结果表明:基于变量投影重要性指数和神经网络优势构建的高光谱反演模型在反演精度、稳定性和适应性方面表现出优异的性能;而对于基于简单相关性分析构建的单波段模型和比值模型而言,建模样本选择对模型精度有较大影响,导致模型反演精度、稳定性和适用性较差;汉江中下游典型河段水体总悬浮物浓度整体上在18.8~187.0 mg/L之间变化,季节性差异明显,即春、夏两季悬浮物浓度低于秋季。

Abstract

A hyperspectral model of retrieving suspended solids concentration in typical reaches of the middle and lower Hanjiang River is constructed based on effective information variable selection and neural network algorithm according to the water quality and hyperspectral data measured in 2012-2013. The performance and estimation effectiveness of the model are analyzed and assessed, and the distribution characteristics of suspended solids concentration in the waters of the study area are discussed. Results demonstrate that the hyperspectral retrieval model based on variable importance in projection index and neural network advantage has excellent retrieval accuracy, stability and adaptability; in contrast, for the single-band model and ratio model based on simple correlation analyses, the selection of modeling samples has a huge influence on the accuracy of the model, leading to poor retrieval accuracy, stability and adaptability. The concentration of suspended solids in the typical reaches of the middle and lower Hanjiang River varies within 18.8-187.0 mg/L. Seasonal differences are quite obvious: the concentrations of suspended solids in spring and summer are lower than those in autumn.

关键词

水体悬浮物 / 高光谱 / 悬浮物浓度 / 遥感反演 / 变量投影重要性指数 / BP神经网络 / 汉江中下游

Key words

suspended solids in water / hyperspectrum / concentration of total suspended solids / remote sensing retrieval / variable importance in projection index / BP neural network / middle and lower Hanjiang River

引用本文

导出引用
肖潇, 徐坚, 赵登忠, 程学军, 李国忠, 赵保成, 徐健. 基于高光谱数据的汉江中下游典型河段水体悬浮物遥感反演[J]. 长江科学院院报. 2020, 37(11): 141-148 https://doi.org/10.11988/ckyyb.20191003
XIAO Xiao, XU Jian, ZHAO Deng-zhong, CHENG Xue-jun, LI Guo-zhong, ZHAO Bao-cheng, XU Jian. Remote Sensing Retrieval of Total Suspended Solids Concentration for Typical Reach of Hanjiang River Using Hyperspectral Data[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(11): 141-148 https://doi.org/10.11988/ckyyb.20191003
中图分类号: X832   

参考文献

[1] KRITIKOS H, YORINKS L, SMITH H. Suspended Solids Analysis Using ERTS-A Data[J]. Remote Sensing of Environment, 1974, 3(1): 69-78.
[2] LATHROP R, LILLESAND T, YANDELL B. Testing the Utility of Simple Multi-date Thematic Mapper Calibration Algorithms for Monitoring Turbid Inland Waters[J]. International Journal of Remote Sensing, 1991, 12(10): 2045-2063.
[3] 齐 峰, 王学军. 内陆水体水质监测与评价中的遥感应用[J]. 环境工程学报, 1999(3):90-99.
[4] SCHMUGGE T J, KUSTAS W P, RITCHIE J C, et al. Remote Sensing in Hydrology[J]. Advances in Water Resources, 2002,25(8):1367-1385.
[5] RITCHIE J C, COOPER C M. An Algorithm for Estimating Surface Suspended Sediment Concentrations with Landsat MSS Digital Data[J]. Jawra Journal of the American Water Resources Association, 2010,27(3):373-379.
[6] WILLIAMSON A N, GRABAU W E. Sediment Concentration Mapping in Tidal Estuaries[J]. NASA Special Publication, 1973,1:1347-1386.
[7] KLEMAS V, BARTLETT D, PHILPOT W, et al. Coastal and Estuarine Studies with ERTS-1 and Skylab[J]. Remote Sensing of Environment, 1974,3(3):153-174.
[8] MUNDAY JR J C, ALFÖLDI T T. Landsat Test of Diffuse Reflectance Models for Aquatic Suspended Solids Measurement[J]. Remote Sensing of Environment, 1979, 8(2): 169-183.
[9] LATHROP R G.Landsat Thematic Mapper Monitoring of Turbid Inland Water Quality[J]. Photo-grammetric Engineering and Remote Sensing, 1992, 58: 465-470.
[10]MILLER R L, MCKEE B A. Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters[J]. Remote Sensing of Environment, 2004,93(1): 259-266.
[11]ONDERKA M, PEKÁROVÁ P. Retrieval of Suspended Particulate Matter Concentrations in the Danube River from Landsat ETM Data[J]. Science of the Total Environment, 2008,397(1):238-243.
[12]PIERSON D C, STRÖMBECK N. Estimation of Radiance Reflectance and the Concentrations of Optically Active Substances in Lake Mälaren, Sweden, Based on Direct and Inverse Solutions of a Simple Model[J]. Science of the Total Environment, 2001,268(1):171-188.
[13]KALLIO K, KUSTER T, KOPONEN S, et al. Retrieval of Water Quality from Airborne Imaging Spectrometry of Various Lake Types in Different Seasons[J]. Science of the Total Environment, 2001, 268: 56-77.
[14]DEKKER A G, VOS R J, PETERS S W M. Analytical Algorithms for Lake Water TSM Estimation for Retrospective Analyses of TM and SPOT Sensor Data[J]. International Journal of Remote Sensing, 2002, 23(1): 15-35.
[15]ELEVELD M A, PASTERKAMP R, WOERD H J V D, et al. Remotely Sensed Seasonality in the Spatial Distribution of Sea-surface Suspended Particulate Matter in the Southern North Sea[J]. Estuarine, Coastal and Shelf Science, 2008, 80(1):103-113.
[16]PITARCH J, KAWKA M, ODERMATT D, et al. A Physically-based Model for Total Suspended Matter Retrieval via Hyperspectral Reflectance Inversion in Turbid Waters[C]//Proceedings of the EGU General Assembly 2013. Vienna, Austria. April 7-12, 2013: EGU2013-9803.
[17]ALCÂNTARA E, CURTARELLI M, OGASHAWARA I, et al. Developing QAA-based Retrieval Model of Total Suspended Matter Concentration in Itumbiara Reservoir, Brazil[C]//Proceedings of the International Geoscience and Remote Sensing Symposium 2015 (IGARSS 2015). Milan, Italy. July 26th-July 31th, 2015: 711-714.
[18]KARI E, KRATZER S, HARVEY ET. Retrieval of Suspended Particulate Matter from Turbidity—Model Development, Validation, and Application to MERIS Data over the Baltic Sea[J]. International Journal of Remote Sensing, 2017, 38(7): 1983-2003.
[19]李 京.水域悬浮固体含量的遥感定量研究[J].环境科学学报,1986, 6(2): 166-173.
[20]吴 敏,王学军. 应用MODIS 遥感数据监测巢湖水质[J]. 湖泊科学, 2005, 17(2): 110-113
[21]陈晓玲, 吴忠宜, 田礼乔,等. 水体悬浮泥沙动态监测的遥感反演模型对比分析:以鄱阳湖为例[J]. 科技导报, 2007, 25(6):19-22.
[22]吕 恒, 魏小鸿. 太湖悬浮物浓度的MODIS数据定量反演提取[J]. 地球信息科学学报, 2008, 10(2):151-155.
[23]刘忠华, 李云梅, 吕 恒,等. 基于偏最小二乘法的巢湖悬浮物浓度反演[J]. 湖泊科学, 2011, 23(3):357-365.
[24]杨晓红. 一种改进的近红外波段悬浮物生物光学反演模型[J]. 安徽地质, 2013(4):295-298.
[25]吕君伟, 刘湘南, 王 晶,等. 基于PSO_RBF神经网络的南海近岸海域悬浮物浓度遥感反演[J]. 海洋环境科学, 2013(5):669-673
[26]烟贯发, 张雪萍, 王书玉,等. 基于改进的PSO优化LSSVM参数的松花江哈尔滨段悬浮物的遥感反演[J]. 环境科学学报, 2014, 34(8):2148-2156.
[27]何报寅, 张 文, 乔晓景,等. 基于FOA-SVM方法的长江中游悬浮物浓度遥感反演研究[J]. 长江流域资源与环境, 2015, 24(4):647-652.
[28]曹 引, 冶运涛, 赵红莉, 等. 南四湖水体实测高光谱与悬浮物浓度及浊度关系分析[J]. 水电能源科学, 2016(1):40-44.
[29]刘青娥, 雷晓辉, 王 浩, 等. 面向分布式水文模型的汉江流域空间离散化方法[J]. 南水北调与水利科技, 2009,7(2):24-28.
[30]李权国, 张中旺. 汉江中下游流域生态环境保护与可持续发展策略[J]. 贵州农业科学, 2010,38(12):205-207.
[31]顾自强, 高 飞, 汪周园. 汉江流域水资源现状及承载力研究[J]. 环境与可持续发展, 2014,39(6):99-102.
[32]李铜基, 唐军武, 陈清莲,等. 光谱仪测量离水辐射率的处理方法[J]. 海洋技术学报, 2000,19(3):11-16.
[33]唐军武, 田国良, 汪小勇,等.水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004,8(1):37-44.
[34]汪小勇, 唐军武, 李铜基, 等. 水面之上法测量水体光谱的关键技术[J]. 海洋技术学报, 2012,31(1):72-76.
[35]RUFFINC, KING R L, YOUNAN N H. A Combined Derivative Spectroscopy and Savitzky-Golay Filtering Method for the Analysis of Hyperspectral Data[J]. GIScience & Remote Sensing, 2008,45(1):1-15.
[36]吴妍娴.基于红外光谱SIMCA方法的研究及应用[D].北京: 北京化工大学, 2017.
[37]张娟娟.土壤养分信息的光谱估测研究[D].南京: 南京农业大学, 2009.
[38]CLOUTIS E A. Review Article Hyperspectral Geological Remote Sensing: Evaluation of Analytical Techniques[J]. International Journal of Remote Sensing, 1996,17(12):2215-2242.
[39]高洪智, 卢启鹏, 丁海泉,等. 基于连续投影算法的土壤总氮近红外特征波长的选取[J]. 光谱学与光谱分析, 2009, 29(11):2951-2954.
[40]曾 涛, 琚存勇, 蔡体久,等.利用变量投影重要性准则筛选郁闭度估测参数[J]. 北京林业大学学报, 2010,32(6):37-41.
[41]JIANG H, ZHANG H, CHEN Q, et al. Identification of Solid State Fermentation Degree with FT-NIR Spectroscopy: Comparison of Wavelength Variable Selection Methods of CARS and SCARS[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2015, 149:1-7.
[42]于 雷, 洪永胜, 耿 雷, 等.基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报, 2015,31(14):103-109.
[43]李江波, 郭志明, 黄文倩,等.应用CARS和SPA算法对草莓SSC含量NIR光谱预测模型中变量及样本筛选[J]. 光谱学与光谱分析, 2015,35(2):372-378.
[44]贺文钦, 严文娟, 贺国权,等.无创血液成分检测中基于VIP分析的波长筛选[J]. 光谱学与光谱分析, 2016,36(4):1080-1084.
[45]何 钰,唐 颖, 陈兰英,等.基于BP神经网络的水质评价及水质时空演变趋势研究[J]. 环境保护科学, 2018, 44(3): 114-120.
[46]张 茜, 冯民权.基于BP神经网络马尔科夫模型的漳泽水库水质预测[J]. 黑龙江大学工程学报, 2018, 9(2): 38-44.
[47]WOLD S, SJÖSTRÖM M, ERIKSSON L. Partial Least Squares Projections to Latent Structures (PLS) in Chemistry[J]. Encyclopedia of computational chemistry, 2002, 3: 67-69.
[48]王惠文.偏最小二乘回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006: 190-198.

基金

国家重点研发专项(2018YFD1100405); 长江科学院中央级公益性科研院所基本科研业务费项目(CKSF2019410/KJ,CKSF2019411/KJ,CKSF2019528/KJ)

PDF(1931 KB)

Accesses

Citation

Detail

段落导航
相关文章

/