流量调节对长江口潮流不对称的影响

王安琪, 张蔚, 诸裕良, 陈婷, 季小梅

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (3) : 18-24.

PDF(1534 KB)
PDF(1534 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (3) : 18-24. DOI: 10.11988/ckyyb.20211296
河湖保护与治理

流量调节对长江口潮流不对称的影响

  • 王安琪1,2, 张蔚1,3, 诸裕良1, 陈婷1, 季小梅1
作者信息 +

Influence of Discharge Regulation on Tidal Current Asymmetry in the Changjiang River Estuary

  • WANG An-qi1,2, ZHANG Wei1,3, ZHU Yu-liang1, CHEN Ting1, JI Xiao-mei1
Author information +
文章历史 +

摘要

长江上游人类工程的建设使得长江口来水来沙条件发生变化,改变了河口地区洪枯季径流量,并进一步影响潮流不对称特性。而潮流不对称对河口近岸的泥沙输运及地貌演变有着重要的影响。利用二维水动力数学模型对长江口感潮河段进行水动力模拟,研究洪枯季流量调节对潮流不对称的影响。采用非稳态调和方法(NS_TIDE)并结合偏度指标分析长江口涨落潮流速不对称和涨落憩历时不对称的变化趋势。研究结果表明:潮波在河口的上溯过程中,潮流不对称呈现先增大后减小的趋势。河口枯季径流的提高在加强中下游区域落潮流占优的趋势同时也延长河口大部分区域落憩的历时。主汛期洪峰的削弱加快了中上游区域的落潮流速,缩短了上游区域落憩历时,而潮流流速和涨落憩历时不对称在下游区域则表现出相反的趋势。

Abstract

The construction of engineering projects in the upper reaches of the Changjiang River has changed the flow and sediment conditions of the Changjiang River Estuary and the river discharges in flood and dry seasons, which further affects the tidal current asymmetry. Such asymmetry exerts evident impact on offshore sediment transport and geomorphic evolution in the estuary. The influence of discharge regulation on tidal current asymmetry in flood and dry seasons was studied by applying a two-dimensional hydrodynamic numerical model of the Changjiang River Estuary. The nonstationary harmonic method (NS_TIDE) and tidal skewness method were applied to analyze the variation trend of flow velocity asymmetry (FVA) and flow duration asymmetry(FDA). Results manifest that tidal current asymmetry intensifies prior to a slight decrease as tidal propagates landward. The increase of discharge in dry season at the estuary not only strengthens the ebb tide dominance in the middle and lower reaches of the estuary, but also prolongs the duration of low-water slack in most areas of the estuary. In major flood period, the weakening of flood peak enhances the ebb current velocity in the middle and upper reaches and shortens the duration of low-water slack in the upstream region, while the asymmetry of tidal flow velocity and flow duration shows an opposite trend in the downstream region.

关键词

流量调节 / 潮流偏度 / 潮流不对称 / 径流 / 长江口

Key words

discharge regulation / tidal skewness / tidal current asymmetry / river discharge / Changjiang River Estuary

引用本文

导出引用
王安琪, 张蔚, 诸裕良, 陈婷, 季小梅. 流量调节对长江口潮流不对称的影响[J]. 长江科学院院报. 2023, 40(3): 18-24 https://doi.org/10.11988/ckyyb.20211296
WANG An-qi, ZHANG Wei, ZHU Yu-liang, CHEN Ting, JI Xiao-mei. Influence of Discharge Regulation on Tidal Current Asymmetry in the Changjiang River Estuary[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(3): 18-24 https://doi.org/10.11988/ckyyb.20211296
中图分类号: TV143   

参考文献

[1] JAY D A. Green's Law Revisited: Tidal Long-Wave Propagation in Channels with Strong Topography[J]. Journal of Geophysical Research, 1991, 96(C11): 20585.
[2] 李谊纯. 潮流不对称与推移质泥沙长期净输运[J]. 泥沙研究, 2013(5): 21-26.
[3] FRIEDRICHS C T,AUBREY D G. Non-Linear Tidal Distortion in Shallow Well-Mixed Estuaries:a Synthesis[J]. Estuarine,Coastal and Shelf Science,1988,27(5):521-545.
[4] NIDZIEKO N J. Tidal Asymmetry in Estuaries with Mixed Semidiurnal/Diurnal Tides[J]. Journal of Geophysical Research, 2010, 115(C8): C08006.
[5] SONG D, WANG X H, KISS A E, et al. The Contribution to Tidal Asymmetry by Different Combinations of Tidal Constituents[J]. Journal of Geophysical Research, 2011, 116(C12): C12007.
[6] GONG W, SCHUTTELAARS H, ZHANG H. Tidal Asymmetry in a Funnel-Shaped Estuary with Mixed Semidiurnal Tides[J]. Ocean Dynamics, 2016, 66(5): 637-658.
[7] 李谊纯. 一个潮流不对称计算方法及其在北仑河口的应用[J]. 海洋工程, 2014, 32(4): 110-116.
[8] 曹 勇, 陈吉余, 张二凤, 等. 三峡水库初期蓄水对长江口淡水资源的影响[J]. 水科学进展, 2006, 17(4): 554-558.
[9] YAN T, YANG Y P, LI Y B, et al. Possibilities and Challenges of Expanding Dimensions of Waterway Downstream of Three Gorges Dam[J]. Water Science and Engineering, 2019, 12(2): 136-144.
[10] 周建军, 张 曼. 近年长江中下游径流节律变化、效应与修复对策[J]. 湖泊科学, 2018, 30(6): 1471-1488.
[11] GUO L, VAN DER WEGEN M, ROELVINK J A, et al. The Role of River Flow and Tidal Asymmetry on 1-D Estuarine Morphodynamics[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(11): 2315-2334.
[12] HOITINK A J F, WANG Z B, VERMEULEN B, et al. Tidal Controls on River Delta Morphology[J]. Nature Geoscience, 2017, 10(9): 637-645.
[13] 恽才兴. 长江河口近期演变基本规律[M]. 北京: 海洋出版社, 2004.
[14] 杨正东, 朱建荣, 王 彪, 等. 长江河口潮位站潮汐特征分析[J]. 华东师范大学学报(自然科学版), 2012(3): 111-119.
[15] 徐宇程, 朱首贤, 张文静, 等. 长江大通站径流量的丰平枯水年划分探讨[J]. 长江科学院院报, 2018, 35(6): 19-23.
[16] ZHANG W, FENG H, HOITINK A J F, et al. Tidal Impacts on the Subtidal Flow Division at the Main Bifurcation in the Yangtze River Delta[J]. Estuarine, Coastal and Shelf Science, 2017, 196: 301-314.
[17] 张 蔚, 傅雨洁, 过津侃, 等. 潮波运动对长江口分流的影响[J]. 水科学进展, 2018, 29(4): 551-556.
[18] 章卫胜. 中国近海潮波运动数值模拟[D]. 南京: 河海大学, 2005.
[19] MATTE P, JAY D A, ZARON E D. Adaptation of Classical Tidal Harmonic Analysis to Nonstationary Tides, with Application to River Tides[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3): 569-589.
[20] DARWIN G H. Bakerian Lecture:On Tidal Prediction[J]. Philosophical Transactions of the Royal Society of London(A), 1891, 182: 159-229.
[21] LU S, TONG C, LEE D-Y, et al. Propagation of Tidal Waves up inYangtze EStuary during the Dry Season[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6445-6473.
[22] GODIN G. The Propagation of Tides up Rivers with Special Considerations on the Upper Saint Lawrence River[J]. Estuarine,Coastal and Shelf Science,1999,48(3):307-324.

基金

国家自然科学基金长江水科学研究联合基金重点支持项目(U2040203);河海大学中央高校基本科研业务费专项资金项目(B210202026,B200204036,B210205007)

PDF(1534 KB)

Accesses

Citation

Detail

段落导航
相关文章

/