针对以径流相对亏缺状态表征的水文干旱事件,采用3种常用的概率分布函数Log-normal、Gamma和Normal,拟合了赣江外洲站实测年径流资料;利用外洲站年径流的统计特征,推导了干旱历时和干旱强度2种典型干旱特征变量的理论概率分布函数的参数;计算了期望间隔时间定义下干旱历时内累积干旱强度达到某一阈值的干旱事件的重现期,并采用Monte Carlo随机模拟技术进行了验证。结果表明:根据年径流统计信息解析推求水文干旱事件的重现期,具有较强的统计基础和可信的精度,能够一定程度克服依靠有限观测水文序列进行干旱事件重现期推断的样本偏差,可为定量评估流域干旱风险,支撑流域水安全保障提供新的思路。
Abstract
To address the challenge of estimating the return level of hydrological drought events due to the limited sample size of drought events that can be obtained from measured streamflow data, we applied three commonly utilized annual runoff probability distribution functions,namely, Log-normal, Gamma, and Normal,to measured runoff data obtained from the Waizhou station on the Ganjiang River. Theoretical probability distribution functions (PDFs) for drought characteristics, including duration and severity, were derived using statistical properties of annual runoff. The return period, defined as the mean interarrival time of drought events surpassing a certain severity threshold, was computed and validated through Monte Carlo simulation. Results demonstrate that deriving return periods of hydrological drought events using PDFs of drought duration and severity establishes a robust statistical basis with credible accuracy. The proposed method partially mitigates sample bias in estimating drought return periods based on limited observed hydrological series, offering a novel approach to assessing future drought risk.
关键词
水文干旱 /
重现期 /
计算方法 /
年径流 /
赣江流域
Key words
hydrological drought /
return period /
calculation method /
annual runoff /
Ganjiang River basin
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CATTIAUX J,VAUTARD R,CASSOU C,et al.Winter 2010 in Europe: A Cold Extreme in a Warming Climate[J]. Geophysical Research Letters, 2010, 37(20): L20704.
[2] 洪兴骏. 水文干旱指标与频率分析计算方法研究及应用[D]. 武汉: 武汉大学, 2017. (HONG Xing-jun. Hydrological Drought Indices and Frequency Analysis Methods and Their Applications[D].Wuhan: Wuhan University, 2017. (in Chinese))
[3] ZHOU P, LIU Z. Likelihood of Concurrent Climate Extremes and Variations over China[J]. Environmental Research Letters, 2018, 13(9): 094023.
[4] YEVJEVICH V. Hydrology Paper[M]. USA: Colorado State University Press, 1967.
[5] WILHITE D A, GLANTZ M H. Understanding: The Drought Phenomenon: The Role of Definitions[J]. Water International, 1985, 10(3): 111-120.
[6] 程 亮, 金菊良, 郦建强, 等. 干旱频率分析研究进展[J]. 水科学进展, 2013, 24(2): 296-302. (CHENG Liang, JIN Ju-liang, LI Jian-qiang, et al. Advance in the Study of Drought Frequency Analysis[J]. Advances in Water Science, 2013, 24(2): 296-302.(in Chinese))
[7] LOAICIGA H A, MARIÑO M A. Recurrence Interval of Geophysical Events[J]. Journal of Water Resources Planning and Management, 1991, 117(3): 367-382.
[8] DOUGLAS E M, VOGEL R M, KROLL C N. Impact of Streamflow Persistence on Hydrologic Design[J]. Journal of Hydrologic Engineering, 2002, 7(3): 220-227.
[9] FERNÁNDEZ B, SALAS J D. Return Period and Risk of Hydrologic Events. I: Mathematical Formulation[J]. Journal of Hydrologic Engineering, 1999, 4(4): 297-307.
[10] CHUNG C H, SALAS J D. Drought Occurrence Probabilities and Risks of Dependent Hydrologic Processes[J]. Journal of Hydrologic Engineering, 2000, 5(3): 259-268.
[11] BONACCORSO B, CANCELLIERE A, ROSSI G. An Analytical Formulation of Return Period of Drought Severity[J]. Stochastic Environmental Research and Risk Assessment, 2003, 17(3): 157-174.
[12] 洪兴骏,巴欢欢,余蔚卿,等.基于年径流统计特征推求水文干旱事件重现期[C] //中国水利学会2020学术年会论文集第一分册.北京,2020:419-428.(HONG Xing-jun,BA Huan-huan,YU Wei-qing,et al. Deriving Return Periods of Hydrological Drought Events Based on Statistical Characteristics of Annual Runoff[C] //Proceedings of 2020 Annual Conference of Chinese Hydraulic Engineering Society. Volume I.Beijing, 2020: 419-428. (in Chinese))
[13] CANCELLIERE A,BONACCORSO B,ROSSI G,et al. On the Probabilistic Characterization of Drought Events [C] //Proceedings of the 23rd Annual American Geophysical Union Hydrology Days. Colorado: Fort Collins, March 31 – April 2, 2003: 33-44.
[14] SHIAU J T,SHEN H W.Recurrence Analysis of Hydrologic Droughts of Differing Severity[J]. Journal of Water Resources Planning and Management,2001,127(1):30-40.
[15] 洪兴骏, 郭生练, 李天元. 基于Copula函数的鄱阳湖都昌站枯水多变量频率分析[J]. 长江科学院院报, 2014, 31(12): 11-16. (HONG Xing-jun, GUO Sheng-lian, LI Tian-yuan. Multivariate Analysis on Low Flow Frequency at Duchang Station in Poyang Lake Using Copula Function[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(12): 11-16.(in Chinese))
[16] 雷 声,石 莎,屈艳萍,等.2022年鄱阳湖流域特大干旱特征及未来应对启示[J].水利学报,2023,54(3):333-346.(LEI Sheng, SHI Sha, QU Yan-ping, et al. Characteristics of Extreme Drought in the Poyang Lake Basin in 2022 and Implications for Future Response[J]. Journal of Hydraulic Engineering, 2023, 54(3): 333-346.(in Chinese))
[17] MANN H B. Nonparametric Tests Against Trend[J]. Econometrica, 1945, 13(3): 245.
[18] KENDALL M G. Rank Correlation Methods[M]. 4th ed. London: Griffin, 1975.
[19] PETTITT A N. A Non-parametric Approach to the Change-point Problem[J]. Applied Statistics, 1979, 28(2): 126.
[20] 洪兴骏, 郭生练, 王 乐, 等. 基于最大熵原理的水文干旱指标计算方法研究[J]. 南水北调与水利科技, 2018, 16(2): 93-99. (HONG Xing-jun, GUO Sheng-lian, WANG Le, et al. Hydrological Drought Index Calculation Using Principle of Maximum Entropy[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(2): 93-99.(in Chinese))
[21] ANDERSON T W, DARLING D A. A Test of Goodness of Fit[J]. Journal of the American Statistical Association, 1954, 49(268): 765-769.
[22] BENJAMIN J R, CORNELL C A. Probability, Statistics, and Decision for Civil Engineers[M]. Dover Edition. Mineola, New York: Dover Publications, 2014.
[23] AKAIKE H. A New Look at the Statistical Model Identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
基金
国家自然科学基金项目(51809243);水资源与水电工程科学国家重点实验室(武汉大学)开放研究基金项目(2018SWG03);江西省鄱阳湖水资源与环境重点实验室开放研究基金项目(2020GPSYS06)