基于陆气耦合模式的降雨径流模拟研究进展

王永强, 刘万, 黎晓东, 许继军

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (1) : 26-35.

PDF(8623 KB)
PDF(8623 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (1) : 26-35. DOI: 10.11988/ckyyb.20221195
水资源

基于陆气耦合模式的降雨径流模拟研究进展

  • 王永强1,2, 刘万1,2, 黎晓东1,2,3, 许继军1,2
作者信息 +

Research Progresses of Rainfall-Runoff Simulation Based on Land-Atmosphere Coupling Model

  • WANG Yong-qiang1,2, LIU Wan1,2, LI Xiao-dong1,2,3, XU Ji-jun1,2
Author information +
文章历史 +

摘要

基于陆气耦合模式的降雨径流模拟是变化环境下水文循环过程研究的重要内容之一。围绕陆气耦合降雨径流模拟,分析基于陆气耦合模式的降雨径流模拟框架,对比基础输入资料、天气模式和陆面水文模型各方面的优缺点,回顾基于该框架的发展历程,从集合预报、数据驱动、陆面水文模型与天气模式3个方面介绍了陆气耦合降雨径流模拟技术的发展,提出多尺度转换、双向耦合、不确定性问题及误差修正4个热点关键技术问题,并对未来研究进行展望,以期为推进基于陆气耦合模式的降雨径流模拟研究提供参考。

Abstract

Rainfall-runoff simulation based on land-atmosphere coupling model plays a significant role in understanding the hydrological cycle process under changing conditions. By analyzing the basic input data, weather model, and land hydrological models, we summarize the framework of the land-atmosphere coupling model for rainfall-runoff simulation. Furthermore, we review the development history and discuss the enhancements made through ensemble predictions, data-driven models, as well as improvements in land hydrological models and weather models. We identify four crucial technical issues: multiscale conversion, bidirectional coupling, uncertainty assessment, and error correction. Additionally, we discuss the future research prospects aiming to provide valuable references for advancing research on land-atmosphere coupling models in rainfall-runoff simulation.

关键词

陆气耦合模式 / 降雨径流模拟 / 水文模型 / 天气模式 / 水文循环

Key words

land-atmosphere coupling model / rainfall-runoff simulation / hydrological model / weather model / hydrological cycle

引用本文

导出引用
王永强, 刘万, 黎晓东, 许继军. 基于陆气耦合模式的降雨径流模拟研究进展[J]. 长江科学院院报. 2024, 41(1): 26-35 https://doi.org/10.11988/ckyyb.20221195
WANG Yong-qiang, LIU Wan, LI Xiao-dong, XU Ji-jun. Research Progresses of Rainfall-Runoff Simulation Based on Land-Atmosphere Coupling Model[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(1): 26-35 https://doi.org/10.11988/ckyyb.20221195
中图分类号: P339    P338   

参考文献

[1] 刘艳丽, 张建云, 王国庆, 等. 环境变化对流域水文水资源的影响评估及不确定性研究进展[J]. 气候变化研究进展, 2015, 11(2): 102-110.(LIU Yan-li, ZHANG Jian-yun, WANG Guo-qing, et al. Review for Impacts Assessment of Environmental Change on Hydrology and Water Resources and Uncertainty in Catchment Scale[J]. Progressus Inquisitiones de Mutatione Climatis, 2015, 11(2): 102-110.(in Chinese))
[2] 包红军, 王莉莉, 沈学顺, 等. 气象水文耦合的洪水预报研究进展[J]. 气象, 2016, 42(9): 1045-1057. (BAO Hong-jun, WANG Li-li, SHEN Xue-shun, et al. A Review: Advances of Flood Forecasting of Hydro-meteorological Forecast Technology[J]. Meteorological Monthly, 2016, 42(9): 1045-1057.(in Chinese))
[3] 芮孝芳. 数值天气预报的成功经验对洪水预报的启示[J]. 水利水电科技进展, 2019, 39(1): 1-6. (RUI Xiao-fang. Inspirations of Successful Experience of Numerical Weather Prediction to Flood Forecasting[J]. Advances in Science and Technology of Water Resources, 2019, 39(1): 1-6.(in Chinese))
[4] 周自江, 曹丽娟, 廖 捷, 等. 水文气象信息概述: 观测、融合与再分析[J]. 气象, 2022, 48(3): 272-283. (ZHOU Zi-jiang, CAO Li-juan, LIAO Jie, et al. Overview of Hydrometeorological Information: Observation, Data Fusion and Reanalysis[J]. Meteorological Monthly, 2022, 48(3): 272-283.(in Chinese))
[5] 荆文龙, 冯 敏, 杨雅萍. 一种NCEP/NCAR再分析气温数据的统计降尺度方法[J]. 地球信息科学学报, 2013, 15(6): 819-828. (JING Wen-long, FENG Min, YANG Ya-ping. A Statistical Downscaling Approach of NCEP/NCAR Reanalysis Temperature Data[J]. Journal of Geo-information Science, 2013, 15(6): 819-828.(in Chinese))
[6] 王传辉,申彦波,姚锦烽,等.3种再分析资料在太阳能资源评估中的适用性[J].太阳能学报,2022,43(8):164-173.(WANG Chuan-hui,SHEN Yan-bo,YAO Jin-feng,et al.Applicability of Three Reanalysis Data in Assessment of Solar Energy Resources in China[J].Acta Energiae Solaris Sinica,2022,43(8):164-173.(in Chinese))
[7] 刘 秀. 中国区域两种ERA再分析资料的对比分析[D]. 焦作: 河南理工大学, 2018. (LIU Xiu. Comparative Analysis of Two Reanalysis Datasets of ERA-40 and ERA-interim in China[D]. Jiaozuo: Henan Polytechnic University, 2018. (in Chinese))
[8] 张德杰, 师春香, 张 涛, 等. 多种资料的总云量产品在中国区域的对比分析[J]. 高原气象, 2022, 41(3): 803-813. (ZHANG De-jie, SHI Chun-xiang, ZHANG Tao, et al. Comparative Analysis of the Total Cloud Cover Products of Various Data in China[J]. Plateau Meteorology, 2022, 41(3): 803-813.(in Chinese))
[9] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 Global Reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049.
[10] 赵天保,符淙斌.中国区域ERA-40、NCEP-2再分析资料与观测资料的初步比较与分析[J].气候与环境研究,2006,11(1):14-32.(ZHAO Tian-bao,FU Cong-bin.Preliminary Comparison and Analysis between ERA-40, NCEP-2 Reanalysis and Observations over China[J]. Climatic and Environmental Research, 2006, 11(1): 14-32.(in Chinese))
[11] 戴泽军, 宇如聪, 李 建, 等. 三套再分析资料的中国夏季降水日变化特征[J]. 气象, 2011, 37(1): 21-30. (DAI Ze-jun, YU Ru-cong , LI Jian, et al. The Characteristics of Summer Precipitation Diurnal Variations in Three Reanalysis Datasets over China[J]. Meteorological Monthly, 2011, 37(1): 21-30.(in Chinese))
[12] SRLAND S L, SCHÄR C, LÜTHI D, et al. Bias Patterns and Climate Change Signals in GCM-RCM Model Chains[J]. Environmental Research Letters, 2018, 13(7): 074017.
[13] FLESCH T K, REUTER G W. WRF Model Simulation of Two Alberta Flooding Events and the Impact of Topography[J]. Journal of Hydrometeorology, 2012, 13(2): 695-708.
[14] 杨文发, 丁洪亮, 李春龙, 等. MM5模型及其面向长江流域降雨预报应用试验[J]. 人民长江, 2006, 37(9): 72-73, 76. (YANG Wen-fa, DING Hong-liang, LI Chun-long, et al. MM5 Model and Its Application Test for Rainfall Forecast in Yangtze River Basin[J]. Yangtze River, 2006, 37(9): 72-73, 76.(in Chinese))
[15] 王 维,刘 佳,李传哲,等.高分辨率融合降水驱动下的WRF/WRF-Hydro耦合模拟研究[J].水资源保护,2023,39(5):125-134.(WANG Wei,LIU Jia,LI Chuan-zhe,et al.Study on Coupled WRF/WRF-hydro System Driven by High Resolution Merging Precipitation[J].Water Resources Protection,2023,39(5):125-134.(in Chinese))
[16] 管成功, 陈起英, 佟 华, 等. T639L60全球中期预报系统预报试验和性能评估[J]. 气象, 2008, 34(6): 11-16. (GUAN Cheng-gong, CHEN Qi-ying, TONG Hua, et al. Experiments and Evaluations of Global Medium Range Forecast System of T639L60[J]. Meteorological Monthly, 2008, 34(6): 11-16.(in Chinese))
[17] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用[J]. 应用气象学报, 2022, 33(6): 641-654. (HUANG Li-ping, DENG Lian-tang, WANG Rui-chun, et al. Key Technologies of CMA-MESO and Application to Operational Forecast[J]. Journal of Applied Meteorological Science, 2022, 33(6): 641-654.(in Chinese))
[18] 田济扬. 天气雷达多源数据同化支持下的陆气耦合水文预报[D]. 北京: 中国水利水电科学研究院, 2017. (TIAN Ji-yang. Coupled Atmospheric-hydrological Modeling for Hydrological Forecast Based on Multi-source Data Assimilation Containing Radar Data[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2017. (in Chinese))
[19] 孙明坤, 李致家, 刘志雨, 等. WRF-Hydro模型与新安江模型在陈河流域的应用对比[J]. 湖泊科学, 2020, 32(3): 850-864. (SUN Ming-kun, LI Zhi-jia, LIU Zhi-yu, et al. Application of WRF-hydro Modeling System in Chenhe Basin and Comparison with Xin'anjiang Model[J]. Journal of Lake Sciences, 2020, 32(3): 850-864.(in Chinese))
[20] 王 婕,宋晓猛,张建云,等.中小尺度流域洪水模型模拟比较研究[J].中国农村水利水电,2019(7):72-76.(WANG Jie,SONG Xiao-meng,ZHANG Jian-yun,et al.Flood Simulation of the Small and Medium-sized River Catchment by Using Multiple Hydrological Models[J]. China Rural Water and Hydropower,2019(7):72-76.(in Chinese))
[21] 阮宏威, 邹松兵, 陆志翔, 等. 耦合SWAT与RIEMS模拟黑河干流山区径流[J]. 冰川冻土, 2017, 39(2): 384-394. (RUAN Hong-wei, ZOU Song-bing, LU Zhi-xiang, et al. Coupling SWAT and RIEMS to Simulate Mountainous Runoff in the Upper Reaches of the Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2017, 39(2): 384-394.(in Chinese))
[22] 张 俊, 郭生练, 陈桂亚, 等. 大气水文耦合模式在洪水预报中的应用研究[J]. 水电能源科学, 2010, 28(9): 37-40, 81. (ZHANG Jun, GUO Sheng-lian, CHEN Gui-ya, et al. Review on Coupling Atmospheric and Hydrological Model and Its Application in Flood Forecasting[J]. Water Resources and Power, 2010, 28(9): 37-40, 81.(in Chinese))
[23] KOHLER M A, LINSLEY R K. Predicting the Runoff form Storm Rainfall[R]. Washington DC:U.S. Weather Bureau, 1951.
[24] 包为民.水文预报[M].4版.北京:中国水利水电出版社,2009:35-69.(BAO Wei-min.Hydrologic Forecast[M]. Edition 4. Beijing: China Water & Power Press, 2009: 35-69.(in Chinese))
[25] 徐宗学, 初 祁, 王 昊, 等. 基于陆气耦合的城市雨洪模拟技术研究进展[J]. 北京师范大学学报(自然科学版), 2022, 58(3): 434-446. (XU Zong-xue, CHU Qi, WANG Hao, et al. Urban Flood Simulation Based on Land-atmosphere Coupling Models[J]. Journal of Beijing Normal University (Natural Science), 2022, 58(3): 434-446.(in Chinese))
[26] 陆桂华,吴志勇,雷Wen,等.陆气耦合模型在实时暴雨洪水预报中的应用[J].水科学进展,2006,17(6):847-852.(LU Gui-hua,WU Zhi-yong,LEI Wen, et al. Application of a Coupled Atmospheric-hydrological Modeling System to Real-time Flood Forecast[J]. Advances in Water Science, 2006, 17(6): 847-852.(in Chinese))
[27] 叶翔宇, 李 强, 郭禹含, 等. 高性能并行分布式水文模型研究进展[J]. 地理科学进展,2022,41(4):731-740.(YE Xiang-yu, LI Qiang, GUO Yu-han, et al. Progress of Research on High-performance Parallel Distributed Hydrological Model[J]. Progress in Geography, 2022, 41(4): 731-740.(in Chinese))
[28] 周 聂,侯精明,苏 锋,等.基于陆气耦合的城市内涝高分辨率模拟预报方法[J].中国给水排水,2021,37(21):131-138.(ZHOU Nie,HOU Jing-ming,SU Feng,et al.High-resolution Simulation and Forecasting of Urban Waterlogging Based on Land-atmosphere Coupling[J]. China Water & Wastewater,2021,37(21): 131-138.(in Chinese))
[29] 段晚锁, 汪 叶, 霍振华, 等. 数值天气预报和气候预测的集合预报方法: 思考与展望[J]. 气候与环境研究, 2019, 24(3): 396-406. (DUAN Wan-suo, WANG Ye, HUO Zhen-hua, et al. Ensemble Forecast Methods for Numerical Weather Forecast and Climate Prediction: Thinking and Prospect[J]. Climatic and Environmental Research, 2019, 24(3): 396-406.(in Chinese))
[30] 曹雪健,戚友存,李梦迪,等.极端暴雨威胁下的城市内涝风险预警系统研究[J]. 大气科学,2022,46(4):953-964.(CAO Xue-jian,QI You-cun,LI Meng-di,et al. Early Warning System of Urban Waterlogging under the Threat of Extreme Rainfall Events[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(4): 953-964.(in Chinese))
[31] 丛树铮. 水科学技术中的概率统计方法[M]. 北京: 科学出版社, 2010: 451-471. (CONG Shu-zheng. Probability and Statistical Methods in Water Science and Technology[M]. Beijing: Science Press, 2010: 451-471.(in Chinese))
[32] 赵琳娜, 刘 莹, 党皓飞, 等. 集合数值预报在洪水预报中的应用进展[J]. 应用气象学报,2014,25(6):641-653. (ZHAO Lin-na, LIU Ying, DANG Hao-fei, et al. The Progress on Application of Ensemble Prediction to Flood Forecasting[J]. Journal of Applied Meteorological Science, 2014, 25(6): 641-653.(in Chinese))
[33] BOUCHER M A, TREMBLAY D, DELORME L, et al. Hydro-economic Assessment of Hydrological Forecasting Systems[J]. Journal of Hydrology,2012,416/417:133-144.
[34] 赵泽谦,黄 强,明 波,等.基于多模型随机组合的水文集合预报方法研究[J].水力发电学报,2021,40(1):76-87.(ZHAO Ze-qian,HUANG Qiang,MING Bo,et al. Hydrological Ensemble Forecasting Method Based on Stochastic Combination of Multiple Models[J]. Journal of Hydroelectric Engineering, 2021, 40(1): 76-87.(in Chinese))
[35] 李 俊, 廖移山, 张 兵, 等. 集合数值预报方法在山洪预报中的初步应用[J]. 高原气象, 2007, 26(4): 854-861. (LI Jun, LIAO Yi-shan, ZHANG Bing, et al. The Preliminary Application of Ensemble Prediction in Flash Flood Forecasting[J]. Plateau Meteorology, 2007, 26(4): 854-861.(in Chinese))
[36] 舒全英, 郭 磊, 孙 甜, 等. 基于数据驱动的碗窑水库洪水预报[J]. 水电能源科学, 2021, 39(11): 115-118. (SHU Quan-ying, GUO Lei, SUN Tian, et al. Wanyao Reservoir Flood Forecasting Based on Data Driven[J]. Water Resources and Power,2021,39(11):115-118.(in Chinese))
[37] 刘 攀, 郑雅莲, 谢 康, 等. 水文水资源领域深度学习研究进展综述[J]. 人民长江, 2021, 52(10): 76-83. (LIU Pan, ZHENG Ya-lian, XIE Kang, et al. Review of Research Progress in Deep Learning for Hydrology and Water Resources[J]. Yangtze River, 2021, 52(10): 76-83.(in Chinese))
[38] 李 鑫, 刘艳丽, 朱士江, 等. 基于新安江模型和BP神经网络的中小河流洪水模拟研究[J]. 中国农村水利水电, 2022(1): 93-97. (LI Xin, LIU Yan-li, ZHU Shi-jiang, et al. Research on the Flood Simulation of Medium and Small Rivers Based on Xin'anjiang Model and BP Neural Network[J]. China Rural Water and Hydropower, 2022(1): 93-97.(in Chinese))
[39] 殷兆凯,廖卫红,王若佳,等.基于长短时记忆神经网络(LSTM)的降雨径流模拟及预报[J]. 南水北调与水利科技,2019,17(6):1-9,27.(YIN Zhao-kai,LIAO Wei-hong,WANG Ruo-jia,et al.Rainfall-runoff Modelling and Forecasting Based on Long Short-term Memory(LSTM)[J]. South-to-North Water Transfers and Water Science & Technology,2019,17(6):1-9,27.(in Chinese))
[40] 阚光远. 数据驱动与半数据驱动模型在降雨径流模拟中的应用与比较研究[D]. 南京: 河海大学, 2013.(KAN Guang-yuan. Study on Application and Comparison of Data-driven Model and Semi-data-driven Model for Rainfall-runoff Simulation[D].Nanjing:Hohai University, 2013. (in Chinese))
[41] 梁 珂, 阚光远, 李致家. 新型耦合数据驱动模型在降雨径流模拟中的应用研究[J]. 水文, 2016, 36(4): 1-7. (LIANG Ke, KAN Guang-yuan, LI Zhi-jia. Application of a New Coupled Data-driven Model in Rainfall-runoff Simulation[J]. Journal of China Hydrology, 2016, 36(4): 1-7.(in Chinese))
[42] RAVURI S, LENC K, WILLSON M, et al. Skillful Precipitation Nowcasting Using Deep Generative Models of Radar[J]. Nature, 2021, 597: 672-677.
[43] 雷晓辉, 王 浩, 廖卫红, 等. 变化环境下气象水文预报研究进展[J]. 水利学报, 2018, 49(1): 9-18. (LEI Xiao-hui, WANG Hao, LIAO Wei-hong, et al. Advances in Hydro-meteorological Forecast under Changing Environment[J].Journal of Hydraulic Engineering,2018,49(1):9-18.(in Chinese))
[44] 王 浩, 雷晓辉, 秦大庸, 等. 基于人类活动的流域产流模型构建[J]. 资源科学, 2003, 25(6): 14-18. (WANG Hao, LEI Xiao-hui, QIN Da-yong, et al. Basin Runoff Yielding Model Construction Based on Human Activities[J]. Resources Science, 2003, 25(6): 14-18.(in Chinese))
[45] 池宸星, 郝振纯, 王 玲, 等. 黄土区人类活动影响下的产汇流模拟研究[J]. 地理科学进展, 2005, 24(3): 101-108. (CHI Chen-xing, HAO Zhen-chun, WANG Ling, et al. Study of Runoff Simulation Considering Effect of Human Activity on the Loess Plateau[J]. Progress in Geography, 2005, 24(3): 101-108.(in Chinese))
[46] 熊立华, 刘烁楠, 熊 斌, 等. 考虑植被和人类活动影响的水文模型参数时变特征分析[J]. 水科学进展, 2018, 29(5): 625-635. (XIONG Li-hua, LIU Shuo-nan, XIONG Bin, et al. Impacts of Vegetation and Human Activities on Temporal Variation of the Parameters in a Monthly Water Balance Model[J]. Advances in Water Science, 2018, 29(5): 625-635.(in Chinese))
[47] 丁 彪, 曾新民. 一种区域气候模式地表产流方案的改进及数值试验[J]. 气象科学, 2006, 26(1): 31-38. (DING Biao, ZENG Xin-min. Numerical Experiments of a Regional Climate Model with Its Surface Runoff Scheme Improved[J]. Scientia Meteorologica Sinica, 2006, 26(1): 31-38.(in Chinese))
[48] NING L, ZHAN C, LUO Y, et al. A Review of Fully Coupled Atmosphere-hydrology Simulations[J]. Journal of Geographical Sciences, 2019, 29(3): 465-479.
[49] 曾新民,丁 彪,宇如聪.区域气候模式RegCM3产流方案的改进及数值试验[J].南京大学学报(自然科学版),2005,41(6):603-611.(ZENG Xin-min,DING Biao,YU Ru-cong.Numerical Experiments of a Regional Climate Model with Improved Surface Runoff-generation Scheme[J]. Journal of Nanjing University (Natural Sciences),2005,41(6):603-611.(in Chinese))
[50] HOUTEKAMER P L,LEFAIVRE L,DEROME J,et al.A System Simulation Approach to Ensemble Prediction[J].Monthly Weather Review,1996,124(6):1225-1242.
[51] 雍 斌, 张万昌, 刘传胜. 水文模型与陆面模式耦合研究进展[J]. 冰川冻土, 2006, 28(6): 961-970. (YONG Bin, ZHANG Wan-chang, LIU Chuan-sheng. Advances in the Coupling Study of Hydrological Models and Land-surface Models[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 961-970.(in Chinese))
[52] CHRISTENSEN J H, CHRISTENSEN O B. A Summary of the PRUDENCE Model Projections of Changes in European Climate by the End of this Century[J]. Climatic Change, 2007, 81(1): 7-30.
[53] 刘昌明, 刘文彬, 傅国斌, 等. 气候影响评价中统计降尺度若干问题的探讨[J]. 水科学进展, 2012, 23(3): 427-437. (LIU Chang-ming, LIU Wen-bin, FU Guo-bin, et al. A Discussion of some Aspects of Statistical Downscaling in Climate Impacts Assessment[J]. Advances in Water Science, 2012, 23(3): 427-437.(in Chinese))
[54] 王 冀. 长江中下游地区最高气温的统计降尺度方法模拟研究[C]∥中国气象学会2007年年会气候变化分会场论文集. 广州:中国气象学会, 2007: 692-697. (WANG Ji. Downscaling Method for Maximum Temperature Statistics in Middle and Lower Yangtze River[C]∥Proceedings of the 2007 Annual Academic Meeting of China Meteorological Society. Guangzhou: China Meteorological Society, 2007: 692-697. (in Chinese))
[55] KHAN M S, COULIBALY P, DIBIKE Y. Uncertainty Analysis of Statistical Downscaling Methods[J]. Journal of Hydrology, 2006, 319(1/2/3/4): 357-382.
[56] 李 新, 程国栋, 卢 玲. 空间内插方法比较[J]. 地球科学进展, 2000, 15(3): 260-265. (LI Xin, CHENG Guo-dong, LU Ling. Comparison of Spatial Interpolation Methods[J]. Advance in Earth Sciences, 2000, 15(3): 260-265.(in Chinese))
[57] MARAUN D, WETTERHALL F, IRESON A M, et al. Precipitation Downscaling under Climate Change: Recent Developments to Bridge the Gap between Dynamical Models and the End User[J]. Reviews of Geophysics, 2010, 48(3): RG3003.
[58] 叶爱中, 戴永久, 夏 军. 降雨时间尺度上的降尺度分析研究[J]. 水文, 2007, 27(5): 16-20. (YE Ai-zhong, DAI Yong-jiu, XIA Jun. SL/XR Comparative Test and Precision Analysis[J]. Journal of China Hydrology, 2007, 27(5): 16-20.(in Chinese))
[59] 宫毓来, 马绍休, 刘伟琦. 机器学习与统计模型在石羊河流域气候降尺度研究中的适用性对比[J]. 中国沙漠, 2022, 42(1): 196-210. (GONG Yu-lai, MA Shao-xiu, LIU Wei-qi. A Comparative Study of Machine Learning and Statistical Models in Climate Downscaling in the Shiyang River Basin[J]. Journal of Desert Research, 2022, 42(1): 196-210.(in Chinese))
[60] 占车生,宁理科,邹 靖,等.陆面水文—气候耦合模拟研究进展[J]. 地理学报,2018,73(5):893-905.(ZHAN Che-sheng,NING Li-ke,ZOU Jing,et al. A Review on the Fully Coupled Atmosphere-hydrology Simulations[J]. Acta Geographica Sinica, 2018, 73(5): 893-905.(in Chinese))
[61] MAXWELL R M,LUNDQUIST J K,MIROCHA J D,et al. Development of a Coupled Groundwater-Atmosphere Model[J]. Monthly Weather Review,2011,139(1):96-116.
[62] 严登华,袁 喆,王 浩,等.水文学确定性和不确定性方法及其集合研究进展[J].水利学报,2013,44(1):73-82.(YAN Deng-hua,YUAN Zhe,WANG Hao,et al. Progress of Certainty and Uncertainty Methods of Hydrologic and the Framework of Ensemble Analysis[J]. Journal of Hydraulic Engineering, 2013, 44(1): 73-82.(in Chinese))
[63] 刘业森, 刘媛媛, 李 敏, 等. 降雨数据空间分辨率在城市流域洪峰变化分析中的影响[J]. 地球信息科学学报, 2022, 24(7): 1326-1336.(LIU Ye-sen, LIU Yuan-yuan, LI Min, et al. Influence of Spatial Resolution of Rainfall Data on Flood Peak in Urban Areas[J]. Journal of Geo-information Science, 2022, 24(7):1326-1336.(in Chinese))
[64] 李志一, 谢鹏程, 杜鹏飞. SWMM模型水质模拟的异参同效现象研究[J]. 给水排水, 2021, 57(2): 133-139. (LI Zhi-yi, XIE Peng-cheng, DU Peng-fei. Analysis of Equifinality for Different Parameters in Water Quality Modeling of SWMM[J]. Water & Wastewater Engineering, 2021, 57(2): 133-139.(in Chinese))
[65] 宋晓猛,占车生,孔凡哲,等.大尺度水循环模拟系统不确定性研究进展[J].地理学报,2011,66(3):396-406.(SONG Xiao-meng,ZHAN Che-sheng,KONG Fan-zhe,et al.A Review on Uncertainty Analysis of Large-scale Hydrological Cycle Modeling System[J]. Acta Geographica Sinica,2011,66(3):396-406.(in Chinese))
[66] 李 鑫,王颖苗.水文模拟优化算法不确定性对流域水资源评估的影响[J].水资源开发与管理,2020,18(8):40-45.(LI Xin,WANG Ying-miao.Influence of Uncertainty in Hydrological Simulation Optimization Algorithm on Watershed Water Resources Assessment[J]. Water Resources Development and Management,2020,18(8):40-45.(in Chinese))
[67] 李家叶, 李铁键, 王光谦, 等. 空中水资源及其降水转化分析[J]. 科学通报, 2018, 63(26): 2785-2796. (LI Jia-ye, LI Tie-jian, WANG Guang-qian, et al. Atmospheric Water Resource and Precipitation Conversion[J]. Chinese Science Bulletin, 2018, 63(26): 2785-2796.(in Chinese))

基金

国家自然科学基金项目(51779013);宁夏重点研发项目(2020BCF01002)

PDF(8623 KB)

Accesses

Citation

Detail

段落导航
相关文章

/