基于系统动力学模型的南渡江流域水资源脆弱性评价

梁栩, 朱丽蓉, 叶长青

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (5) : 17-24.

PDF(5453 KB)
PDF(5453 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (5) : 17-24. DOI: 10.11988/ckyyb.20200246
水资源与环境

基于系统动力学模型的南渡江流域水资源脆弱性评价

  • 梁栩1, 朱丽蓉2, 叶长青1,3
作者信息 +

Assessment of Water Resources Vulnerability of Nandu River Basin Using System Dynamics Model

  • LIANG Xu1, ZHU Li-rong2, YE Chang-qing1,3
Author information +
文章历史 +

摘要

水资源安全影响区域社会经济的健康发展,全球气候变化与人类活动已对流域水资源安全造成巨大压力。建立水资源、水环境及社会经济系统动力学(SD)模型,以层次分析法构建水资源脆弱性评价指标体系与评价标准,设置常规、技术革新型、经济优先型以及综合发展4种模式,采用综合指数加权法对2010—2035年南渡江流域水资源脆弱性进行评价预测并探究水资源脆弱性成因及机理。结果表明:各产业生产用水、城乡用水、GDP增长率与流域水资源脆弱度呈正相关,污水处理率、三产/工业比例与其呈负相关;4种情景都经历中等、轻微和不脆弱3个阶段,整体脆弱度呈现下降趋势,且情景3、情景1、情景2、情景4下降幅度依次增加;情景3整体脆弱度最高,均值为43.81,情景4整体脆弱度最低,均值为33.48;综合发展模式最适合南渡江流域健康发展。

Abstract

Water security affects the healthy and sustainable development of regional social economy. Global climate change and human activities have put great pressure on water resources security. A system dynamics (SD) model involving water resources, water environment, and socio-economic systems was built to assess and predict the water resources vulnerability of Nandu River basin in 2010-2035, and the causes and mechanism of water resources vulnerability were expounded. The assessment index system and evaluation standard were constructed by using the analytic hierarchy process. Four scenarios, namely, conventional, technological innovation, economic priority, and comprehensive development scenarios were set in the model. Results unveiled that industrial water consumption, urban/rural water consumption, and GDP growth rate were positively related to water resources vulnerability, while sewage treatment rate and the tertiary industry/industrial ratio were negatively related to water resources vulnerability. The water resources in all the four scenarios went through three stages: moderately vulnerable, slightly vulnerable, and not vulnerable, displaying a downward trend in vulnerability. Such downward amplitude in scenario 4 was the largest, followed by scenarios 2, 1 and 3 in sequence. The overall vulnerability was the largest in scenario 3, with an average of 43.81, and the smallest in scenario 4, averaging 33.48. In conclusion, scenario 4, namely, the comprehensive development mode is the most suitable for the healthy development of Nandu River Basin.

关键词

水资源脆弱性 / 系统动力学 / 系统流 / 情景设置 / 评价体系 / 南渡江流域

Key words

water resource vulnerability / system dynamics / system flow / scenarios / assessment system / Nandu River Basin

引用本文

导出引用
梁栩, 朱丽蓉, 叶长青. 基于系统动力学模型的南渡江流域水资源脆弱性评价[J]. 长江科学院院报. 2021, 38(5): 17-24 https://doi.org/10.11988/ckyyb.20200246
LIANG Xu, ZHU Li-rong, YE Chang-qing. Assessment of Water Resources Vulnerability of Nandu River Basin Using System Dynamics Model[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(5): 17-24 https://doi.org/10.11988/ckyyb.20200246
中图分类号: TV21    X522   

参考文献

[1] BAKKER K.Water Security: Research Challenges and Opportunities[J].Science,2012,337(6097):914-915.
[2] 刘昌明. 二十一世纪中国水资源若干问题的讨论[J].水利水电技术,2002(1):15-19.
[3] 贾绍凤,张军岩,张士锋.区域水资源压力指数与水资源安全评价指标体系[J].地理科学进展, 2002(6):538-545.
[4] GREY D, GARRICK D. Water Security as a Defining of 21 Century Challenge[C]//Proceedings of the Water Security Risk and Society Conference, University of Oxford, Oxford, April 16-18, 2012: 1-5.
[5] DOERFLIGER N, JEANNIN P Y, ZWAHLEN F. Water Vulnerability Assessment in Karst Environments: A New Method of Defining Protection Areas Using a Multi-attribute Approach and GIS Tools (EPIK Method)[J]. Environmental Geology, 1999, 39(2): 165-176.
[6] 陈俊旭, 赵红玲, 赵志芳,等. 水资源脆弱性评估的RESC模型及其在东部季风区的应用[J]. 应用基础与工程科学学报, 2018(5):940-953.
[7] MIRAUDA D, OSTOICH M. Surface Water Vulnerability Assessment Applying the Integrity Model as a Decision Support System for Quality Improvement[J]. Environmental Impact Assessment Review, 2011, 31(3):161-171.
[8] PADOWSKI J C, JAWITZ J W. Water Availability and Vulnerability of 225 Large Cities in the United States[J]. Water Resources Research, 2012, 48(12):1-16.
[9] ALBINET M, MARGAT J. Cartographie de la Vulnérabilité à la Pollution des Nappes D'eausouterraine[J]. Bull BRGM, 1970(3): 13-22.
[10] PERVEEN L S, JAMES A. Scale Invariance of Water Stress and Scarcity Indicators: Facilitating Cross-scale Comparisons of Water Resources Vulnerability[J]. Applied Geography, 2010, 31(1):321-328.
[11] KULSHRESHTHA S N. A Global Outlook for Water Resources to the Year 2025[J]. Water Resources Management, 1998, 12(3):167-184.
[12] ASADI P, ATAIE ASHTIANI B, BEHESHTI A. Vulnerability Assessment of Urban Groundwater Resources to Nitrate: The Case Study of Mashhad, Iran[J]. Environmental Earth Sciences, 2017, 76(1):41.
[13] 刘绿柳. 水资源脆弱性及其定量评价[J]. 水土保持通报, 2002(2):44-47.
[14] 凌红波, 徐海量, 乔 木,等. 基于AHP和模糊综合评判的玛纳斯河流域水资源安全评价[J]. 中国沙漠, 2010,30(4):989-994.
[15] 林钟华, 刘丙军, 伍颖婷,等. 变化环境下珠三角城市群水资源脆弱性评价[J]. 中山大学学报(自然科学版), 2018,57(6):14-22.
[16] 马芳冰, 王 烜, 李春晖.水资源脆弱性评价研究进展[J]. 水资源与水工程学报, 2012(1):33-40.
[17] 刘贤词, 岳 平, 邢 巧,等.海南省南渡江流域生态环境调查与保护对策[J]. 水利经济, 2014,32(5):46-49,73.
[18] 海南省统计局.海南统计年鉴[M].北京:中国统计出版社,2010—2018.
[19] 李 丽, 冉中阳, 徐 文,等. 南渡江河湖水系连通系统仿真与定量评价研究[J]. 人民黄河, 2018,40(10):48-54.
[20] 王其藩. 系统动力学理论与方法的新进展[J]. 系统工程理论方法应用, 1995(2):6-12.
[21] 王其藩.系统动力学[M].北京: 清华大学出版社,1997:30-35.
[22] 霍 雨, 王腊春, 焦士兴,等. 南方部分中小城市水污染驱动力及防治措施优先级序[J]. 中国环境科学,2009(10):46-52.
[23] 向红梅. 区域水安全评价指标体系的构建与应用研究[D].广州:暨南大学,2011.
[24] 王文圣, 金菊良, 丁 晶,等. 水资源系统评价新方法:集对评价法[J]. 中国科学(E辑:技术科学), 2009(9):37-42.
[25] 位 帅, 陈志和, 梁剑喜,等. 基于SD模型的中山市水资源系统特征及其演变规律分析[J]. 资源科学,2014,36(6):1158-1167.
[26] 左东启, 戴树声, 袁汝华,等. 水资源评价指标体系研究[J]. 水科学进展, 1996,7(4):367-374.
[27] 张凤太, 王腊春, 苏维词. 基于DPSIRM概念框架模型的岩溶区水资源安全评价[J]. 中国环境科学, 2015,35(11):313-322.
[28] 吕彩霞,仇亚琴,贾仰文,等.海河流域水资源脆弱性及其评价[J].南水北调与水利科技,2012(1):67-71.
[29] 邹 君, 傅双同, 毛德华,等. 中国南方湿润区水资源脆弱度评价及其管理:以湖南省衡阳市为例[J]. 水土保持通报, 2008,28(2):76-80.
[30] 邹 君, 刘兰芳, 田亚平,等. 地表水资源的脆弱性及其评价初探[J]. 资源科学, 2007(1):93-99.

基金

国家自然科学基金项目(51569009);海南省自然科学基金项目(419MS019);海南省科协青年科技英才学术创新计划项目(HAST201629)

PDF(5453 KB)

Accesses

Citation

Detail

段落导航
相关文章

/