基于TRMM和FY-2C的长江流域月降水量的网格化估算研究

张白玉, 邱新法, 曾燕, 韦翔鸿, 王丹丹, 朱晓晨

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (4) : 138-145.

PDF(5672 KB)
PDF(5672 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (4) : 138-145. DOI: 10.11988/ckyyb.20181323
信息技术应用

基于TRMM和FY-2C的长江流域月降水量的网格化估算研究

  • 张白玉1, 邱新法2, 曾燕3, 韦翔鸿4, 王丹丹5, 朱晓晨2
作者信息 +

Grid Estimation of Monthly Precipitation in the Yangtze River Basin Based on TRMM and FY-2C

  • ZHANG Bai-yu1, QIU Xin-fa2, ZENG Yan3, WEI Xiang-hong4, WANG Dan-dan5, ZHU Xiao-chen2
Author information +
文章历史 +

摘要

基于TRMM和FY-2C降水产品,结合气象站观测资料和DEM数据,采用基于区域分月的逐步回归算法,建立降水估算模型。通过模型估算得到长江流域2007年1月、4月、7月、10月降水量的空间分布图,并对得到的结果进行检验和分析。结果表明:模型对2种降水产品能进行有效的订正;模型估算的TRMM降水产品1月、4月、7月、10月的平均相对误差分别是37.7%,47.3%,44.2%,41.9%,FY-2C降水产品1月、4月、7月、10月的平均相对误差是46.3%,50.9%,39.8%,48.8%;模型模拟的TRMM降水的全年相关系数是0.838, FY-2C降水的全年相关系数是0.811,通过两者对比发现,TRMM降水产品作为趋势项的精度较高。模型估算得到的降水分布趋势和原始降水产品分布趋势基本一致,并且能体现出降水的分布规律。

Abstract

In this paper, we adopted a stepwise regression algorithm based on regional monthly division to establish precipitation estimation model based on the data from TRMM and FY-2C. This model also combined with observation data of weather stations and DEM data. By employing the estimation model, we obtained the spatial distribution of precipitation of the Yangtze River in January, April, July and October 2007, and tested and analyzed the results. The simulation results showed that the model could revise TRMM and FY-2C effectively. Further analysis and calculation showed that the averaged relative errors of TRMM precipitation in the four months were 37.7%, 47.3%, 44.2% and 41.9%, respectively,while those of FY-2C precipitation were 46.3%, 50.9%, 39.8% and 48.8%, respectively. From the perspective of the whole year, the correlation coefficient of simulated TRMM precipitation was 0.838, while the correlation coefficient of simulated FY-2C precipitation was 0.811. The simulation result showed that TRMM was more accurate than FY-2C. Moreover, the distribution of precipitation remained almost the same with the original data, and the results of the present model reflected the distribution pattern of precipitation.

关键词

长江流域 / 月降水量 / TRMM / FY-2C / 网格化估算

Key words

Yangtze River basin / monthly precipitation / TRMM / FY-2C / grid estimation

引用本文

导出引用
张白玉, 邱新法, 曾燕, 韦翔鸿, 王丹丹, 朱晓晨. 基于TRMM和FY-2C的长江流域月降水量的网格化估算研究[J]. 长江科学院院报. 2020, 37(4): 138-145 https://doi.org/10.11988/ckyyb.20181323
ZHANG Bai-yu, QIU Xin-fa, ZENG Yan, WEI Xiang-hong, WANG Dan-dan, ZHU Xiao-chen. Grid Estimation of Monthly Precipitation in the Yangtze River Basin Based on TRMM and FY-2C[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(4): 138-145 https://doi.org/10.11988/ckyyb.20181323
中图分类号: P426.613   

参考文献

[1] 赵海根,杨胜天,周 旭,等.TRMM 3B42降雨数据在渭河流域的应用分析[J].水文,2015,35(1):61-67.
[2] 蔡研聪,金昌杰,王安志,等.中高纬度地区TRMM卫星降雨数据的精度评价[J].应用生态学报,2014,25(11):3296-3306.
[3] MOFFITT C B, HOSSAIN F, ADLER R F, et al. Validation of a TRMM based global Flood Detection System in Bangladesh[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(2):165-177.
[4] 李景刚,阮宏勋,李纪人,等.TRMM降水数据在气象干旱监测中的应用研究[J].水文,2010,30(4):43-46.
[5] 陈 贺,李原园,杨志峰,等.地形因素对降水分布影响的研究[J].水土保持研究,2007,14(1):119-122.
[6] 骆腾飞,谭德宝,文雄飞,等.基于MODIS的长江源区雪冰遥感监测及其变化规律分析[J].长江科学院院报,2017,34(3):143-147.
[7] 李晓英,叶根苗,蔡晨凯,等.基于GRACE和MODIS数据的长江流域陆地水储量变化分析及预测[J].长江科学院院报,2018,35(5):130-135.
[8] 成 璐,沈润平,师春香,等.CMORPH和TRMM 3B42降水估计产品的评估检验[J].气象,2014,40(11):1372-1379.
[9] 曾红伟,李丽娟.澜沧江及周边流域TRMM 3B43数据精度检验[J].地理学报,2011,66(7):994-1004.
[10]HUFFMAN G J, BOLVIN D T, NELKIN E J, et al. The TRMM Mulitisatellite Precipitation Analysis(TMPA): Quasi-global, Multiyear, Combined-sensor Precipitation Estimates at Fine Scales[J]. Journal of Hydrometeorology, 2007, 8(1): 38-55.
[11]SHEPHERD J M, PIERCE H, NEGRI A J. Rainfall Modification by Major Urban Areas: Observations from Space-borne Rain Radar on the TRMM Satellite[J]. Journal of Applied Meteorology, 2002, 41(7): 689-701.
[12]NESBITT S W, ZIPSER E J. The Diurnal Cycle of Rainfall and Convective Intensity According to Three Years of TRMM Measurements[J]. Journal of Climate, 2003, 16(10): 1456-1475.
[13]闵爱荣,游 然,卢乃锰,等.TRMM卫星微波成像仪资料的陆面降水反演[J].热带气象学报,2008,24(3):265-272.
[14]白爱娟,方建刚,张科翔.TRMM卫星资料对陕西及周边地区夏季降水的探测[J].灾害学,2008,23(2):41-45.
[15]TAKAHASHI H G, FUJINAMI H, YASUNARI T, et al. Diumalrainfall Pattern Observed by Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-PR) around the Indochina Peninsula[J]. Journal of Geophysical Research, 2010,115: D07109.
[16]BARROS A P, LETTENMAIER D P. Dynamic Modeling of Orographically Induced Precipitation[J]. Reviews of Geophysics, 1994, 32(3): 265-284.
[17]季 漩,罗 毅.TRMM降水数据在中天山区域的精度评估分析[J].干旱区地理,2013,36(2):253-262.
[18]YIN Z Y, ZHANG X, LIU X, et al. An Assessment of the Biases of Satellite Rainfall Estimates over the Tibetan Plateau and Correction Methods Based on Topographic Analysis[J]. Journal of Hydrometeorology, 2008, 9(3): 301-326.
[19]JI X, CHEN Y. Characterizing Spatial Patterns of Precipitation Based on Corrected TRMM 3B43 Data over the Mid-Tianshan Mountains of China[J]. Journal of Mountain Science, 2012, 9(5): 7373-645.
[20]王华荣,朱小祥,徐会明,等.基于FY-2C卫星资料估算四川地面降水方法研究[J].气象,2008(8):29-34,131.
[21]夏 双,阮仁宗,周 义,等.基于FY-2C卫星数据的藏北高原降水估算研究[J].长江流域资源与环境,2013,22(6):786-792.
[22]王天天. FY-2C和TRMM卫星红外通道信号差异分析及降水判识研究[D].北京:中国气象科学研究院, 2007.
[23]ZHU X, QIU X, ZENG Y, et al. High-resolution Precipitation Downscaling in Mountainous Areas over China: Development and Application of a Statistical Mapping Approach[J]. International Journal of Climatology, 2018, 38(1): 77-93.
[24]韩雪云,杨 青,姚俊强.新疆天山山区近51年来降水变化特征[J].水土保持研究, 2013, 20(2):139-144.

基金

国家自然科学青年科学基金项目(41805049);南京信息工程大学人才启动基金资助项目(2018r009)

PDF(5672 KB)

Accesses

Citation

Detail

段落导航
相关文章

/