数字孪生驱动的长江流域干旱防御平台设计与开发

李喆, 向大享, 陈喆, 崔长露

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (8) : 180-188.

PDF(4062 KB)
PDF(4062 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (8) : 180-188. DOI: 10.11988/ckyyb.20230594
数字孪生基础理论与关键技术研究专栏

数字孪生驱动的长江流域干旱防御平台设计与开发

作者信息 +

Drought Resistance Information Platform Driven by Digital Twins for the Changjiang River Basin: Design and Development

Author information +
文章历史 +

摘要

在全球气候变化的背景下,长江流域发生了多次严重的高温干旱灾害,流域抗旱管理面临着旱情监测告警效率较低、旱灾预报预警精度不高、抗旱预案推演能力不足等瓶颈,迫切需要开展数字化转型。从长江流域抗旱减灾业务管理和“四预”应用需求出发,基于智慧水利和数字孪生建设的总体要求,综合运用WebGL、GIS等技术,建立了干旱防御数字孪生平台,研发了遥感干旱监测评估、干旱专业模型动态加载、旱警水位超限预警、抗旱预案可视化等关键技术,初步实现了“预报-预警-预演-预案”全链条贯通业务应用,切实提升了长江流域抗旱管理智能化、精细化水平,为流域干旱防灾减灾提供了技术支撑。

Abstract

In the context of global climate change, the Changjiang River basin has suffered from multiple severe high temperatures and drought disasters. Drought resistance management in the basin is faced with such bottleneck problems as low efficiency of drought monitoring and warning, inadequate accuracy of drought prediction and early-warning, and insufficient ability to deduce drought plans. To address these issues, digital transformation has become exigent. In line with the comprehensive requirements of smart water conservancy and digital twin technology, a digital twin platform for drought prevention has been constructed by utilizing WebGL and GIS to meet the operational management requirements of drought resistance and disaster mitigation in the Changjiang River Basin, aligning with the demands of the “forecast, early warning, preview, and contingency planning” principles. Key technologies have been developed, including remote sensing drought monitoring and evaluation, dynamic loading of drought-specific models, early-warning of water levels exceeding drought limit, and visualization of drought reduction plans. Consequently, the business application covering the full chain of “forecast, early warning, preview, and contingency planning” has been achieved. This has effectively improved the intelligent and refined level of drought resistance management in the Changjiang River Basin, providing technical support for drought prevention and disaster reduction in the basin.

关键词

长江流域 / 干旱防御信息平台 / 数字孪生 / 四预

Key words

Changjiang River Basin / drought defense information platform / digital twin / forecast, early-warning, preview, and contingency planning

引用本文

导出引用
李喆, 向大享, 陈喆, . 数字孪生驱动的长江流域干旱防御平台设计与开发[J]. 长江科学院院报. 2024, 41(8): 180-188 https://doi.org/10.11988/ckyyb.20230594
LI Zhe, XIANG Da-xiang, CHEN Zhe, et al. Drought Resistance Information Platform Driven by Digital Twins for the Changjiang River Basin: Design and Development[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(8): 180-188 https://doi.org/10.11988/ckyyb.20230594
中图分类号: TV87 (防洪工程)   

参考文献

[1]
周军, 任宏昌, 王蒙, 等. 2022年夏季长江流域干旱特征及成因分析[J]. 人民长江, 2023, 54(2): 29-35.
(ZHOU Jun, REN Hong-chang, WANG Meng, et al. Characteristics and Causes of Drought Event over Yangtze River Basin in Summer 2022[J]. Yangtze River, 2023, 54(2): 29-35. (in Chinese))
[2]
周波涛, 钱进. IPCC AR6报告解读:极端天气气候事件变化[J]. 气候变化研究进展, 2021, 17(6): 713-718.
(ZHOU Bo-tao, QIAN Jin. Changes of Weather and Climate Extremes in the IPCC AR6[J]. Climate Change Research, 2021, 17(6): 713-718. (in Chinese))
[3]
武新英, 郝增超, 张璇, 等. 中国夏季复合高温干旱分布及变异趋势[J]. 水利水电技术(中英文), 2021, 52(12): 90-98.
(WU Xin-ying, HAO Zeng-chao, ZHANG Xuan, et al. Distribution and Trend of Compound Hot and Dry Events during Summer in China[J]. Water Resources and Hydropower Engineering, 2021, 52(12): 90-98. (in Chinese))
[4]
梅梅, 高歌, 李莹, 等. 1961—2022年长江流域高温干旱复合极端事件变化特征[J]. 人民长江, 2023, 54(2): 12-20.
(MEI Mei, GAO Ge, LI Ying, et al. Change Characteristics in Compound High Temperature and Drought Extreme Events over Yangtze River Basin from 1961 to 2022[J]. Yangtze River, 2023, 54(2): 12-20. (in Chinese))
[5]
郝立生, 马宁, 何丽烨. 2022年长江中下游夏季异常干旱高温事件之环流异常特征[J]. 干旱气象, 2022, 40(5): 721-732.
摘要
2022年夏季长江流域发生了建国以来最为严重的干旱高温气候事件,对当地工农业生产、居民生活、生态安全等造成严重影响。为深入认识这次干旱高温气候事件发生的原因和改进气候预测技术,利用1951—2022年2400多测站气温、降水数据和NCEP/NCAR再分析数据等资料,采用T-N波作用通量、视热源Q<sub>1</sub>(Q<sub>2</sub>)诊断和合成分析、距平分析等方法,从大气环流异常的角度进行综合分析。主要结论如下:(1)2022年夏季,500 hPa源自北大西洋地区的扰动异常偏强,在沿中高纬西风带向东传播时引发了明显的大槽大脊活动,波动能量主要沿西风带向东传播,没有出现在东亚向东南方向传播的特征,造成冷空气活动位置偏北,很难影响到长江流域。(2)2022年夏季,500 hPa高度场在青藏高原上空出现明显正距平扰动,尤其8月扰动进一步加强,东移到长江流域,诱发西北太平洋副热带高压西伸,使得副热带高压呈现东西带状分布。副热带高压(简称“副高”)西部完全控制了长江流域地区,一方面副高阻挡了北方冷空气南下,另一方面副高长时间维持下沉运动,不利于降水发生,有利于下沉增温。(3)2022年夏季,热带对流区(视热源)位置异常偏南到赤道以南(气候态在5°N—20°N),有两方面影响:一是造成哈德来经圈环流(Hadley Cell)上升支异常偏南,长江流域在8月为异常下沉区,不利于降水发生,有利于下沉增温效应的出现;另一方面造成2022年夏季亚洲热带夏季风偏弱、东亚副热带夏季风偏强,低频信号向长江中下游传播明显偏弱,这些都不利于长江中下游降水过程的发生。(4)高纬、中低纬、低纬热带地区环流异常协同作用造成2022年长江流域夏季出现异常的干旱高温气候事件。要预测长江流域夏季降水或高温干旱,需提前关注500 hPa北大西洋地区扰动信号的发生及未来传播特征,青藏高原上空高度场扰动的发生及移动特征,热带对流(热源)位置变化及伴随的热带夏季风强度变化、低频信号的传播特征等。
(HAO Li-sheng, MA Ning, HE Li-ye. Circulation Anomalies Characteritics of the Abnormal Drought and High Temperature Event in the Middle and Lower Reaches of the Yangtze River in Summer of 2022[J]. Journal of Arid Meteorology, 2022, 40(5): 721-732. (in Chinese))
[6]
冯宝飞, 邱辉, 纪国良. 2022年夏季长江流域气象干旱特征及成因初探[J]. 人民长江, 2022, 53(12): 6-15.
(FENG Bao-fei, QIU Hui, JI Guo-liang. Characteristics and Causes of Meteorological Drought over Changjiang River Basin in Summer of 2022[J]. Yangtze River, 2022, 53(12): 6-15. (in Chinese))
[7]
贾建伟, 王栋, 徐伟峰, 等. 2022年鄱阳湖流域干旱综合评估及成因分析[J]. 人民长江, 2023, 54(2):36-42.
(JIA Jian-wei, WANG Dong, XU Wei-feng, et al. Comprehensive Evaluation and Cause Analysis of Drought in Poyang Lake Basin in 2022[J]. Yangtze River, 2023, 54(2): 36-42. (in Chinese))
[8]
张树誉, 赵杰明, 李士高, 等. 陕西省干旱信息管理决策服务系统[J]. 气象, 1997, 23(2): 29-31.
(ZHANG Shu-yu, ZHAO Jie-ming, LI Shi-gao, et al. Shaanxi Drought Information Management Decision Service System[J]. Meteorological Monthly, 1997, 23(2): 29-31. (in Chinese))
[9]
王靖彬. 山东省抗旱指挥管理信息系统平台开发研究[D]. 济南: 山东大学, 2009.
(WANG Jing-bin. Development and Analysis of Drought-resistant Management Information System in Shandong Province[D]. Jinan: Shandong University, 2009. (in Chinese))
[10]
刘航, 蒋尚明, 金菊良, 等. 基于GIS的区域干旱灾害风险区划研究[J]. 灾害学, 2013, 28(3):198-203.
(LIU Hang, JIANG Shang-ming, JIN Ju-liang, et al. A GIS-based Approach to Regional Drought Risk Zoning[J]. Journal of Catastrophology, 2013, 28(3): 198-203. (in Chinese))
[11]
高阳华, 徐永进, 杨世琦, 等. 基于ArcGIS Geoprocessing的干旱遥感监测系统研究与设计[J]. 西南大学学报(自然科学版), 2013, 35(4): 1-7.
(GAO Yang-hua, XU Yong-jin, YANG Shi-qi, et al. Research and Design of a Drought Remote Sensing Monitoring System Based on the ArcGIS Geoprocessing Technology[J]. Journal of Southwest University (Natural Science Edition), 2013, 35(4): 1-7. (in Chinese))
[12]
李鹏飞, 王延乐, 王志飞, 等. 基于WebGIS的长江流域干旱评估预报系统设计[J]. 人民长江, 2014, 45(2):18-21.
(LI Peng-fei, WANG Yan-le, WANG Zhi-fei, et al. Information System Design for Drought Evaluation and Forecast in Yangtze River Basin Based on WebGIS[J]. Yangtze River, 2014, 45(2): 18-21. (in Chinese))
[13]
吴迪, 张海涛, 何斌, 等. 基于模糊聚类循环迭代模型的陕西省农业干旱风险评估与区划[J]. 干旱地区农业研究, 2018, 36(5): 230-241.
(WU Di, ZHANG Hai-tao, HE Bin, et al. Assessment and Zoning of Agriculture Drought Risk Based on Fuzzy Clustering Iterative Model in Shaanxi[J]. Agricultural Research in the Arid Areas, 2018, 36(5): 230-241. (in Chinese))
[14]
蔡阳, 成建国, 曾焱, 等. 加快构建具有“四预” 功能的智慧水利体系[J]. 中国水利, 2021(20): 2-5.
(CAI Yang, CHENG Jian-guo, ZENG Yan, et al. Accelerate to Build Smart Water System with the Function of “Four Pres”[J]. China Water Resources, 2021(20): 2-5. (in Chinese))
[15]
黄艳. 数字孪生长江建设关键技术与试点初探[J]. 中国防汛抗旱, 2022, 32(2): 16-26.
(HUANG Yan. Study on Key Technology and Pilot of Digital Twin Yangtze River Construction[J]. China Flood & Drought Management, 2022, 32(2): 16-26. (in Chinese))
[16]
李文学, 寇怀忠. 关于建设数字孪生黄河的思考[J]. 中国防汛抗旱, 2022, 32(2):27-31.
(LI Wen-xue, KOU Huai-zhong. Thoughts on the Construction of Digital Twin Yellow River in the New Stage[J]. China Flood & Drought Management, 2022, 32(2): 27-31. (in Chinese))
[17]
刘昌军, 吕娟, 任明磊, 等. 数字孪生淮河流域智慧防洪体系研究与实践[J]. 中国防汛抗旱, 2022, 32(1):47-53.
(LIU Chang-jun, Juan, REN Ming-lei, et al. Research and Application of Digital Twin Intelligent Flood Prevention System in Huaihe River Basin[J]. China Flood & Drought Management, 2022, 32(1): 47-53. (in Chinese))
[18]
李喆, 叶松, 杨星玥, 等. 数字孪生驱动的南水北调中线水源工程水质平台设计与开发[J]. 长江科学院院报, 2023, 40(3): 174-180.
摘要
南水北调中线水源地面临着水质监测数据自动化程度不高、污染物扩散模拟效率较低、突发性水污染应急能力不足等困难,迫切需要开展数字化转型。基于数字孪生建设的总体要求,综合运用GIS、UE4、WebGL等新一代信息技术,建立了数字孪生水质平台,研发了水质浓度场静态可视化、污染物迁移扩散动态可视化和水质三维分层可视化模型等关键技术,初步实现了水质“四预”功能,切实提升了南水北调中线水源区水环境智能化、精细化管理水平,为推进饮用水水源地水质现代化提档升级提供了技术示范。
(LI Zhe, YE Song, YANG Xing-yue, et al. Design and Development of a Digital-twins-driven Water Quality Information Platform for the Middle Route of South-to-north Water Diversion Project[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(3): 174-180. (in Chinese))
[19]
国家防洪抗旱总指挥部办公室. 旱限水位(流量)的确定办法[R]. 北京:国家防洪抗旱总指挥部办公室, 2011.
(Office of the National Flood Control and Drought Relief Headquarters. Method for Determining the Drought Limit Water Level (Flow)[R]. Beijing: Office of the National Flood Control and Drought Relief Headquarters, 2011. (in Chinese))
[20]
严子奇, 周祖昊, 韦瑞深, 等. 基于双层滑动的水库旱限水位确定算法[J]. 水科学进展, 2022, 33(6):914-923.
(YAN Zi-qi, ZHOU Zu-hao, WEI Rui-shen, et al. A Double-Layer Sliding Algorithm for Determining Drought-limited Water Level of Reservoirs[J]. Advances in Water Science, 2022, 33(6): 914-923. (in Chinese))
[21]
罗成鑫, 丁伟, 张弛, 等. 水库分级分期旱限水位设计与控制研究[J]. 水利学报, 2022, 53(3): 348-357.
(LUO Cheng-xin, DING Wei, ZHANG Chi, et al. Research on the Design and Control of Grading and Staged Drought-limited Water Level for Reservoir[J]. Journal of Hydraulic Engineering, 2022, 53(3): 348-357. (in Chinese))

基金

国家重点研发计划项目(2021YFC3000205)
国家重点研发计划项目(2017YFC1502406)
武汉市重点研发计划项目(CKSD2023927/KJ)
水利部重大科技项目(SKR-2022001)
水利部重大科技项目(SKR-2022003)
湖北省自然科学基金项目(2022CFD173)
中央部门预算项目(2136703)

编辑: 刘运飞
PDF(4062 KB)

Accesses

Citation

Detail

段落导航
相关文章

/