River and Lake Evolution of the Middle and Lower Yangtze River Basin and Its Impacts

YAO Shi-ming, HE Zi-can

Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 1-10.

PDF(3197 KB)
PDF(3197 KB)
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 1-10. DOI: 10.11988/ckyyb.20240655
Special Contribution

River and Lake Evolution of the Middle and Lower Yangtze River Basin and Its Impacts

Author information +
History +

Abstract

Under intense human interference and extreme climate events, the flow-sediment regimes, deposition and erosion patterns, and river-lake interactions in the middle and lower reaches of the Yangtze River have undergone significant transformations. After the impoundment of the Three Gorges Project, the annual upstream sediment supply to the middle and lower Yangtze River has decreased by 70% to 93%, and the flow process has become more concentrated. However, the post-flood recession has accelerated due to the operation of cascade hydropower stations. The annual water supply from the four rivers and three outlets flowing into the Dongting Lake has shown no significant adjustments, with a decline of 9%, while the annual sediment supply has decreased significantly by 38%. The annual water and sediment supply of the five rivers into the Poyang Lake have decreased by 2% and 57%, respectively, while the annual water and sediment outflow from the Poyang Lake have increased by 1% and 5%, respectively. These adjustments have altered the deposition and erosion patterns in the middle and lower Yangtze River. To be specific, from 2003 to 2021, the cumulative erosion of the mainstream reached 5.03 billion m3, with an average annual erosion of 265 million m3per year. The deposition-erosion state of the Dongting Lake has shifted from being deposition-dominated to slight erosion-dominated, and the riverbed of the three outlets generally exhibits an erosion trend. Similarly, the deposition-erosion state of the Poyang Lake has changed from deposition to erosion, and the channel connecting the Poyang Lake to the mainstream Yangtze River shows severe erosion and down-cutting. A predictive model indicates that over the next three decades, the mainstream of the middle and lower Yangtze River will continue to experience significant erosion. By the end of 2050, the cumulative total erosion of the mainstream from Yichang to Datong and the three outlets will be 3.58 billion m3 and 117 million m3, respectively. The Dongting Lake is expected to be slightly silted, while the Poyang Lake area will be slightly eroded. Based on these findings, the impacts of the river-lake evolution on flood control, water supply, navigation, ecology, and safety of water-related structures are expounded systematically. Countermeasures and suggestions are also put forward.

Key words

sediment transport / deposition and erosion evolution / river-lake relationship / impacts / coping measures / the middle and lower Yangtze River Basin

Cite this article

Download Citations
YAO Shi-ming , HE Zi-can. River and Lake Evolution of the Middle and Lower Yangtze River Basin and Its Impacts[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(1): 1-10 https://doi.org/10.11988/ckyyb.20240655

References

[1]
徐颖, 刘涛. 关于长江流域水库群联合调度的总结与思考[J]. 吉林水利, 2023(11): 49-52.
(XU Ying, LIU Tao. Summary and Reflection on the Joint Operation of Reservoirs in the Yangtze River Basin[J]. Jilin Water Resources, 2023(11): 49-52. (in Chinese))
[2]
姚仕明, 黎礼刚, 岳红艳, 等. 长江中下游崩岸机理与护岸工程技术回顾与展望[J]. 中国防汛抗旱, 2022, 32(9):7-15.
(YAO Shi-ming, LI Li-gang, YUE Hong-yan, et al. Review and Prospect of Bank Collapse Mechanism and Bank Protection Engineering Technology in the Middle and Lower Yangtze River[J]. China Flood & Drought Management, 2022, 32(9): 7-15. (in Chinese))
[3]
许全喜, 董炳江, 袁晶, 等. 三峡工程运用后长江中下游河道冲刷特征及其影响[J]. 湖泊科学, 2023, 35(2): 650-661.
(XU Quan-xi, DONG Bing-jiang, YUAN Jing, et al. Scouring Effect of the Middle and Lower Reaches of the Yangtze River and Its Impact after the Impoundment of the Three Gorges Project[J]. Journal of Lake Sciences, 2023, 35(2): 650-661. (in Chinese))
[4]
HE Z, SUN Z, ZHOU W, et al. Gravel-sand Transition of the Yangtze River: Human Disturbances, Migration Processes, and Controlling Factors[J]. Journal of Geophysical Research: Earth Surface, 2023, Doi: 10.1029/2022JF006984.
[5]
杨云平, 李明, 刘万利, 等. 长江荆江河段滩槽演变与航道水深资源提升关系[J]. 水科学进展, 2022, 33(2): 240-252.
(YANG Yun-ping, LI Ming, LIU Wan-li, et al. Study on the Relationship between Beach Trough Evolution and Navigation Obstruction Characteristics in Jingjiang Reach of the Yangtze River[J]. Advances in Water Science, 2022, 33(2): 240-252. (in Chinese))
[6]
李明, 周成成, 夏楷, 等. 三峡水库运用后长江中游河漫滩演变趋势分析[J]. 泥沙研究, 2024, 49(1): 31-37.
(LI Ming, ZHOU Cheng-cheng, XIA Kai, et al. Analysis on the Evolution Trend of Floodplain in the Middle Yangtze River since the Operation of the Three Gorges Reservoir[J]. Journal of Sediment Research, 2024, 49(1): 31-37. (in Chinese))
[7]
卢金友, 姚仕明. 水库群联合作用下长江中下游江湖关系响应机制[J]. 水利学报, 2018, 49(1): 36-46.
(LU Jin-you, YAO Shi-ming. Response Mechanism of the River and Lakes in the Middle and Lower Reaches of the Yangtze River under the Combined Effect of Reservoir Groups[J]. Journal of Hydraulic Engineering, 2018, 49(1): 36-46. (in Chinese))
[8]
王冬, 谢帅, 许继军, 等. 三峡工程运行对鄱阳湖区灌溉供水安全的影响[J]. 长江科学院院报, 2023, 40(8):30-38.
Abstract
三峡工程建设运行后,长江中下游的水文情势发生了显著改变,进而影响了灌溉供水。为分析三峡工程运行对鄱阳湖区灌溉供水安全的影响,从供水水量和水位满足程度的角度,分别分析了三峡工程运行前后的水文水资源以及灌溉供水安全形势变化的情况。三峡工程运行后,鄱阳湖区水量整体减小,其中蓄水期9—10月份的湖区水量减少最为显著,湖区水位整体降幅达1.1~2.5 m;虽然湖区的总水量仍能满足灌溉以及供水的需求,但灌溉及供水水位满足程度显著下降,缺水量增多,灌溉供水水位平均满足程度由83.6%下降至42.7%,缺水量由7 032万m3增大至18 611.25万m3,城乡供水的平均水位满足程度由99.1%下降至87.5%,缺水量由78万m3增大至9 385万m3。通过三峡水库提前或延后蓄水,可提升供水能力约0.2%、0.3%,一定程度上缓解蓄水对9—10月份湖区灌溉供水的影响。
(WANG Dong, XIE Shuai, XU Ji-jun, et al. Impact of Three Gorges Project Operation on Safety of Irrigation Water Supply in Poyang Lake Area[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(8): 30-38. (in Chinese))
[9]
姚仕明, 王洪杨, 刘玉娇, 等. 长江流域河湖近期演变与保护研究进展[J]. 中国防汛抗旱, 2023, 33(9): 1-13.
(YAO Shi-ming, WANG Hong-yang, LIU Yu-jiao, et al. Recent Evolution and Protection of Rivers and Lakes in the Yangtze River Basin[J]. China Flood & Drought Management, 2023, 33(9):1-13. (in Chinese))
[10]
杨春瑞, 邓金运, 陈立, 等. 长江中游通江湖泊对干流顶托作用变化规律[J]. 水科学进展, 2024, 35(1):98-111.
(YANG Chun-rui, DENG Jin-yun, CHEN Li, et al. Study on the Change of Backwater Effect of the Connected Lakes in the Middle Reaches of the Yangtze River[J]. Advances in Water Science, 2024, 35(1):98-111. (in Chinese))
[11]
曾慧俊. 2020年洪水后长江下游东流河段河床演变新特征[J]. 水运工程, 2023(4): 161-165.
(ZENG Hui-jun. New Evolution Characteristics of Riverbed in Dongliu Reach of Lower Yangtze River after Flood in 2020[J]. Port & Waterway Engineering, 2023(4): 161-165. (in Chinese))
[12]
许继军, 周涛. 长江流域2022“汛期反枯” 现象警示与对策[J]. 中国水利, 2023(11): 12-14, 19.
(XU Ji-jun, ZHOU Tao. Warning and Strategies for the “Flood Season Drought” Phenomenon in the Yangtze River Basin in 2022[J]. China Water Resources, 2023(11): 12-14, 19. (in Chinese))
[13]
姚仕明, 胡呈维, 渠庚, 等. 长江通江湖泊演变及其影响效应研究进展[J]. 长江科学院院报, 2022, 39(9): 15-23.
Abstract
在广泛查阅国内外相关文献的基础上,对长江中下游两大通江湖泊洞庭湖与鄱阳湖水沙输移规律、冲淤演变规律及对洪枯调控功能的影响这3个方面的研究进展进行了总结分析,并对当前研究中存在的不足提出了今后应加强的内容,主要包括:①自然和人为影响下两湖演变机制量化揭示,包括资料匮乏时期两湖的演变过程、各种自然因素对两湖冲淤演变的影响的识别、人类活动加剧时期两湖的自然冲淤过程等;②两湖未来长历时、大范围冲淤情势变化趋势预测,实现从两湖泥沙淤积总量预测到淤积时空分布格局变化预测转变;③两湖演变对洪枯调控功能影响的指标化评估,包括表征湖泊洪枯调控功能的指标研究及其与两湖未来不同冲淤情景的响应关系等方面。
(YAO Shi-ming, HU Cheng-wei, QU Geng, et al. Research Advances in Morphological Evolution of Lakes Connecting the Yangtze River and Its Influences[J]. Journal of Changjiang River Scientific Research Institute, 2022, 39(9): 15-23. (in Chinese))
[14]
程俊翔, 徐力刚, 王青, 等. 洞庭湖近30 a水位时空演变特征及驱动因素分析[J]. 湖泊科学, 2017, 29(4): 974-983.
(CHENG Jun-xiang, XU Li-gang, WANG Qing, et al. Temporal and Spatial Variations of Water Level and Its Driving Forces in Lake Dongting over the Last Three Decades[J]. Journal of Lake Sciences, 2017, 29(4): 974-983. (in Chinese))
[15]
邴建平. 长江—鄱阳湖江湖关系演变趋势与调控效应研究[D]. 武汉: 武汉大学, 2018.
(BING Jian-ping. Study on the Evolution Trend and Regulation Effect of the Relationship between the Yangtze River and Poyang Lake[D]. Wuhan: Wuhan University, 2018. (in Chinese))
[16]
丁兵, 姚仕明, 栾华龙. 新形势下长江中下游干流河道治理思路探讨[J]. 长江技术经济, 2023, 7(1):35-42.
(DING Bing, YAO Shi-ming, LUAN Hua-long. Thoughts on River Regulation in the Middle and Lower Reaches of the Changjiang River under the New Situation[J]. Technology and Economy of Changjiang, 2023, 7(1):35-42. (in Chinese))
[17]
柴朝晖, 葛李灿, 姚仕明, 等. 三峡水库蓄水后长江中下游典型物理生境变化及其影响[J]. 长江科学院院报, 2024, 41(12): 1-8.
Abstract
三峡水库蓄水后,长江中下游物理生境发生明显变化,一定程度上影响河流功能的发挥。采用资料分析和文献综述,研究了三峡水库蓄水运用后长江中下游水文条件、河道形态、植被等典型物理生境的变化,总结了其对防洪、航道条件、供水、典型水生生物的影响。提出了应加强研究内容:①监测方面,包括长江中下游系统性和长期性监测、河(航)道治理工程、生态调度试验效果监测等。②规律和机理方面,包括河道形态变化机制和共性规律、干流洲滩植被变化机制、长江中下游洪水位和底栖动物对物理生境变化的响应规律和阈值等。③方法和对策方面,包括多因素影响下长江中下游水文条件中长期变化趋势预测方法,适应物理生境变化并满足需求的整治技术,满足供水、底栖、鱼类繁殖等目标的水库优化调度方案等,物理生境变化-影响效应-改善策略和技术全过程一体化研究。研究成果可为长江大保护及其健康发展提供参考。
(CHAI Zhao-hui, GE Li-can, YAO Shi-ming, et al. Changes of Typical Physical Habitat and Its Impact in the Middle and Lower Reaches of Yangtze River after Impoundment of Three Gorges Reservoir[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(12): 1-8. (in Chinese))
[18]
许全喜, 董炳江, 张为. 2020年长江中下游干流河道冲淤变化特点及分析[J]. 人民长江, 2021, 52(12):1-8.
(XU Quan-xi, DONG Bing-jiang, ZHANG Wei. Characteristics and Analysis on Scouring and Silting Changes in Main Stream of Middle and Lower Reaches of Changjiang River in 2020[J]. Yangtze River, 2021, 52(12):1-8. (in Chinese))
[19]
贾昆明. 三峡工程应对突发洪水危机的过程研究: 以三峡工程2020年防洪为例[J]. 中国资源综合利用, 2021, 39(4): 56-59.
(JIA Kun-ming. Study on the Process of Three Gorges Project Dealing with Sudden Flood Crisis-Taking Flood Control of the Three Gorges Project in 2020 as an Example[J]. China Resources Comprehensive Utilization, 2021, 39(4): 56-59. (in Chinese))
[20]
马建华. 完善流域防洪工程体系加快推进安澜长江建设[J]. 中国水利, 2021(15): 1-3.
(MA Jian-hua. Improve Basin Flood Control Engineering System and Speed up to Boost the Calm Yangtze River Build[J]. China Water Resources, 2021(15): 1-3. (in Chinese))
[21]
吴桂平, 刘元波, 范兴旺. 近30年来鄱阳湖湖盆地形演变特征与原因探析[J]. 湖泊科学, 2015, 27(6): 1168-1176.
(WU Gui-ping, LIU Yuan-bo, FAN Xing-wang. Bottom Topography Change Patterns of the Lake Poyang and Their Influence Mechanisms in Recent 30 Years[J]. Journal of Lake Sciences, 2015, 27(6):1168-1176. (in Chinese))
[22]
WANG J, SHENG Y, GLEASON C J, et al. Downstream Yangtze River Levels Impacted by Three Gorges Dam[J]. Environmental Research Letters, 2013, 8(4): 044012.
[23]
LI D, LU X X, CHEN L, et al. Downstream Geomorphic Impact of the Three Gorges Dam: With Special Reference to the Channel Bars in the Middle Yangtze River[J]. Earth Surface Processes and Landforms, 2019, 44(13): 2660-2670.
[24]
许银山, 曾明, 裘诚, 等. 2022年长江口压咸补淡调度实践及成效[J]. 人民长江, 2023, 54(8):40-45.
(XU Yin-shan, ZENG Ming, QIU Cheng, et al. Practice and Effect of Recharge Fresh Water for Repelling Saltwater Intrusion in Changjiang River Estuary in 2022[J]. Yangtze River, 2023, 54(8): 40-45. (in Chinese))
[25]
刘易庄, 蒋昌波, 向朝晖, 等. 洞庭湖地形变化对洪水过程的影响研究[J]. 水资源与水工程学报, 2023, 34(2):99-106.
(LIU Yi-zhuang, JIANG Chang-bo, XIANG Zhao-hui, et al. Influence of Topographic Changes of Dongting Lake on Flood Process[J]. Journal of Water Resources and Water Engineering, 2023, 34(2): 99-106. (in Chinese))
[26]
张璞, 刘欢, 胡鹏, 等. 全国不同区域河流生态基流达标现状与不达标原因[J]. 水资源保护, 2022, 38(2): 176-182.
(ZHANG Pu, LIU Huan, HU Peng, et al. Current Situation of Compliance of River Ecological Base Flow and Noncompliance Reasons in Different Regions of China[J]. Water Resources Protection, 2022, 38(2): 176-182. (in Chinese))
[27]
刘雨晨, 夏军强, 周美蓉, 等. 三峡建库后长江中游江心洲滩面积调整特点[J]. 泥沙研究, 2023, 48(3): 30-37.
(LIU Yu-chen, XIA Jun-qiang, ZHOU Mei-rong, et al. The Variations in Exposed Area of Mid-channel Bars in the Middle Yangtze River after the Operation of the Three Gorges Project[J]. Journal of Sediment Research, 2023, 48(3): 30-37. (in Chinese))
[28]
田效东, 张勇, 郑英, 等. 泰州港新港作业区沿江码头淤积影响因素研究[J]. 中国水运, 2014(4): 46-47.
(TIAN Xiao-dong, ZHANG Yong, ZHENG Ying, et al. Study on Influencing Factors of Siltation in Wharf along the Yangtze River in Taizhou Port Xingang Operation Area[J]. China Water Transport, 2014(4): 46-47. (in Chinese))
[29]
谢华伟, 于传见, 杨斌. 白茆沙持续冲刷对鑫海码头的结构安全影响[J]. 水运工程, 2022(6): 67-72.
(XIE Hua-wei, YU Chuan-jian, YANG Bin. Influence of Continuous Scouring by Baimao Sand on the Structural Safety of Xinhai Wharf[J]. Port & Waterway Engineering, 2022(6): 67-72. (in Chinese))
[30]
张潮. 武汉长江隧道隧址局部河段河床冲淤变化分析[J]. 中国科技信息, 2014(24):107-108.
(ZHANG Chao. Analysis of Riverbed Erosion and Deposition Changes in Local Reach of Wuhan Yangtze River Tunnel Site[J]. China Science and Technology Information, 2014(24): 107-108. (in Chinese))
PDF(3197 KB)

Accesses

Citation

Detail

Sections
Recommended

/