PDF(8711 KB)
Characteristics of Flood Propagation in River between Two Dams Driven by Hydropeaking Regulation in Cascade Reservoirs
BAI Zhi-peng, HUANG Jian-ping, LIU Xin-jian, LIU Xin-bo, WEN Yong-bo, ZHAO Xin-yi, LUAN Hua-long, YANG Zhong-yong
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (2) : 91-99.
PDF(8711 KB)
PDF(8711 KB)
Characteristics of Flood Propagation in River between Two Dams Driven by Hydropeaking Regulation in Cascade Reservoirs
Based on measured water level and discharge data in 2018, this paper investigates the propagation of flood waves in the river reach between Three Gorges Dam and Gezhouba Dam driven by hydropeaking regulation by using a one-dimensional analytical model. During daily hydropeaking operations at both dams, the outflow exhibited significant diurnal and semi-diurnal fluctuations, ranging from 1 500 to 2 000 m3/s for Three Gorges Dam and 1 200 to 1 500 m3/s for Gezhouba Dam in average. Similarly, the water level at Huanglingmiao and Nanjinguan stations fluctuated by about 0.5-0.8 m daily. The one-dimensional analytical model accurately simulates the fluctuation of water level and discharge between the two dams. The simulation results indicate that flood waves in the river reach propagate as high-frequency standing waves with a period of 1.2 hours. The maximum amplitudes of the standing waves are approximately 2.1 cm for water level and 210 m3/s for flow discharge. The flood waves are superimposed by the hydropeaking operations of both dams, and the timing of regulation at Gezhouba Dam significantly affects flood wave propagation. Specifically, increasing the regulation time from 0.6 to 1.2 hours substantially enhances the flood wave amplitude. While bottom friction of river channel has a negligible impact on wave height, it accelerates the attenuation of flood waves during propagation.
hydropeaking regulation / flood wave / analytical model / standing wave / energy attenuation
| [1] |
|
| [2] |
段文刚, 胡晗, 侯冬梅. 三峡大坝运行20年泄洪安全评价[J]. 长江科学院院报, 2024, 41(6):178-186.
近年来国内外高坝泄水建筑物破坏事故时有发生,三峡大坝泄洪流量和落差大,泄洪功率居世界第一,其泄洪安全备受关注。结合三峡大坝自2003年蓄水以来的历次水力学原型观测和以往水工模型试验结果,围绕泄水建筑物布置、泄流能力、动水压强、水流空化、水流掺气与通气风速、空蚀磨损、消能防冲7个要素指标,依据有关技术标准和工程经验建立了一套完整的高坝泄洪安全评价方法,提出了定性标准和量化阈值,并据此对三峡大坝深孔、表孔、排沙孔和排漂孔进行泄洪安全评价。结果表明: 大坝泄水建筑物布置是合理的; 大坝实际泄流量与设计值符合良好; 大坝泄洪流道未见空蚀磨损破坏;三峡大坝运行20 a,泄水建筑物和坝下消能区运行性态正常,泄洪安全可靠。
|
| [3] |
|
| [4] |
金海洋, 王立, 赵良元, 等. 丹江口水库消落带总氮和总磷变化特征及通量研究[J]. 长江科学院院报, 2023, 40(5):58-62.
开展丹江口水库消落带土壤总氮(TN)和总磷(TP)变化特征与通量研究,对明晰消落带污染输出特征、保护水库水质安全有着重要的实践作用。将丹江口水库划分为汉库和丹库两个区域,以不同区域内典型消落带为研究对象,监测分析了2020年9月—2021年9月不同时期不同区域消落带土壤TN和TP的变化特征,并通过收支平衡法构建模型,估算了丹江口水库消落带在不同时期的TN和TP通量。结果表明,2020年9—12月淹水期内,丹江口水库不同区域消落带TN、TP含量变化显著,汉库耕地和园地的TN、TP含量显著上升,其余区域消落带土壤均存在TN、TP流失现象。2021年3—6月落干期内,丹江口水库不同区域消落带TN、TP含量总体上呈现上升积累趋势。2020年9月—2021年9月,丹江口水库不同区域消落带TN、TP含量整体呈下降趋势。丹江口水库消落带在淹水期表现为氮和磷的释放源,TN通量834.66 t,TP通量10 422.12 t;在落干期表现为氮和磷的吸收汇,TN通量-8 623.69 t,TP通量-10 032.94 t。2020年9月—2021年9月,丹江口水库消落带总体上表现为氮和磷的释放源,TN通量20 122.22 t,TP通量1 509.52 t。丹江口水库消落带污染物释放对水库水质安全的风险不容忽视。
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
张怡辉, 张明. 长江洪水期三峡工程对长江口水动力特性及污水稀释扩散影响的数值模拟研究[J]. 水动力学研究与进展A辑, 2011, 26(4):470-478.
|
| [10] |
黄仁勇, 王敏, 张细兵, 等. 三峡水库汛期“蓄清排浑”动态运用方式计算研究[J]. 长江科学院院报, 2020, 37(1):7-12.
在入库沙量大幅减少的背景下,三峡水库持续开展汛期中小洪水调度,增大了汛期库区泥沙淤积和防洪风险,减少了水库下泄大流量的机会。在三峡水库汛期,开展“蓄清排浑”泥沙调度方式动态运用研究有助于进一步优化三峡水库汛期调度方式。利用三峡水库干支流河道一维非恒定流数学模型,探索开展了三峡水库汛期 “蓄清排浑”动态运用方式计算研究,并提出了汛期“蓄清排浑”动态运用方案。计算结果表明:三峡水库汛期“蓄清排浑”动态运用方式可以同时兼顾排沙、发电和防洪,“蓄清”水位150 m要优于155 m,“蓄清”运行期间库水位可选择在145~150 m之间浮动运行;建议将寸滩含沙量达到2.0 kg/m<sup>3</sup>且当日寸滩站入库流量≥25 000 m<sup>3</sup>/s的时间作为水库增泄“排浑”的起始时间,将出库含沙量降至约0.1 kg/m<sup>3</sup>作为“排浑”调度结束重新进入“蓄清”调度的泥沙参考因素。研究成果可为三峡水库汛期优化调度提供参考。
|
| [11] |
Hundreds of dams have been proposed throughout the Amazon basin, one of the world's largest untapped hydropower frontiers. While hydropower is a potentially clean source of renewable energy, some projects produce high greenhouse gas (GHG) emissions per unit electricity generated (carbon intensity). Here we show how carbon intensities of proposed Amazon upland dams (median = 39 kg COeq MWh, 100-year horizon) are often comparable with solar and wind energy, whereas some lowland dams (median = 133 kg COeq MWh) may exceed carbon intensities of fossil-fuel power plants. Based on 158 existing and 351 proposed dams, we present a multi-objective optimization framework showing that low-carbon expansion of Amazon hydropower relies on strategic planning, which is generally linked to placing dams in higher elevations and smaller streams. Ultimately, basin-scale dam planning that considers GHG emissions along with social and ecological externalities will be decisive for sustainable energy development where new hydropower is contemplated.
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
浦伟伟. 葛洲坝水电站反调节研究[D]. 武汉: 华中科技大学, 2010.
(
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
杨忠勇, 钱门亮, 纪道斌, 等. 三峡和葛洲坝两坝间河道本征波特征分析[J]. 水动力学研究与进展(A辑), 2021, 36(1):121-130.
|
| [23] |
姚仕明, 王兴奎, 张超, 等. 两坝间河段通航水流条件的三维数值模拟[J]. 水科学进展, 2007, 18(3): 374-378.
|
/
| 〈 |
|
〉 |