Inversion of Chlorophyll-a Concentration in Shanghai Offshore Waters Based on BRDF Correction

HAN Zhen, CHEN Shuai-kang, LI Pi-xue, CHEN Hao-cheng

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (9) : 169-177.

PDF(2307 KB)
PDF(2307 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (9) : 169-177. DOI: 10.11988/ckyyb.20230373
Water Conservancy Informatization

Inversion of Chlorophyll-a Concentration in Shanghai Offshore Waters Based on BRDF Correction

Author information +
History +

Abstract

To investigate the ecological status of Shanghai’s offshore waters, we applied the water color remote sensing technology to estimate chlorophyll-a concentration. Considering the impact of BRDF (Bidirectional Reflectance Distribution Function) on inversion accuracy, we utilized LandSat-8 remote sensing data and measured water quality data in association with Lee’s model and QAA (Quasi-analytical algorithm) for BRDF correction. Results indicate that suspended sediment concentration is a major factor affecting BRDF. The angle of sunlight has minimal impact on BRDF when the sun is not vertically incident. After BRDF correction, the mean value of R2 increased by 22.2% to 0.9, whereas mean RMSE decreased to 0.74. Before the correction, chlorophyll-a concentrations in Shanghai’s offshore waters were overestimated by an average of 2 mg/m3. BRDF correction notably enhances chlorophyll-a inversion accuracy, presenting innovative insights for offshore water color inversion.

Key words

chlorophyll-a / BRDF correction / offshore waters / Landsat-8

Cite this article

Download Citations
HAN Zhen , CHEN Shuai-kang , LI Pi-xue , et al. Inversion of Chlorophyll-a Concentration in Shanghai Offshore Waters Based on BRDF Correction[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 169-177 https://doi.org/10.11988/ckyyb.20230373

References

[1]
霍守亮, 张含笑, 金小伟, 等. 我国水生态环境安全保障对策研究[J]. 中国工程科学, 2022, 24(5): 1-7.
(HUO Shou-liang, ZHANG Han-xiao, JIN Xiao-wei, et al. Countermeasures for Assuring Water Ecological Environment Security in China[J]. Strategic Study of CAE, 2022, 24(5): 1-7. (in Chinese))
[2]
BECK R, ZHAN S, LIU H, et al. Comparison of Satellite Reflectance Algorithms for Estimating Chlorophyll-a in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations[J]. Remote Sensing of Environment, 2016, 178: 15-30.
[3]
马兰新. 近海面海浪破碎形成弥散介质辐射传输特性[D]. 哈尔滨: 哈尔滨工业大学, 2017.
(MA Lan-xin. Radiative Transfer Properties in Dispersed Particulate Medium in the Upper Ocean Generated by Breaking Waves[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese))
[4]
NICODEMUS F E. Directional Reflectance and Emissivity of an Opaque Surface[J]. Applied Optics, 1965, 4(7): 767-775.
[5]
GLEASON A, VOSS K, GORDON H, et al. Measuring and Modeling the Polarized Upwelling Radiance Distribution in Clear and Coastal Waters[J]. Applied Sciences, 2018, 8(12): 2683.
[6]
MUKHERJEE L, ZHAI P W, GAO M, et al. Neural Network Reflectance Prediction Model for Both Open Ocean and Coastal Waters[J]. Remote Sensing, 2020, 12(9): 1421.
[7]
KREMEZI M, KARATHANASSI V. Data Fusion for Increasing Monitoring Capabilities of Sentinel Optical Data in Marine Environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4809-4815.
[8]
程春梅, 李渊, 丁奕, 等. 基于GF-1/WFV的钱塘江叶绿素a和总悬浮物浓度遥感估算[J]. 长江科学院院报, 2019, 36(1): 21-28.
(CHENG Chun-mei, LI Yuan, DING Yi, et al. Remote Sensing Estimation of Chlorophyll-a and Total Suspended Matter Concentration in Qiantang River Based on GF-1/WFV Data[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(1): 21-28. (in Chinese))
[9]
代前程, 谢勇, 陶醉, 等. 南漪湖叶绿素a浓度荧光反演算法研究[J]. 光谱学与光谱分析, 2022, 42(12): 3941-3947.
(DAI Qian-cheng, XIE Yong, TAO Zui, et al. Research on Fluorescence Retrieval Algorithm of Chlorophyll a Concentration in Nanyi Lake[J]. Spectroscopy and Spectral Analysis, 2022, 42(12): 3941-3947. (in Chinese))
[10]
YANG H, DU Y, ZHAO H, et al. Water Quality Chl-a Inversion Based on Spatio-Temporal Fusion and Convolutional Neural Network[J]. Remote Sensing, 2022, 14(5): 1267.
[11]
LEE Z P, LUBAC B, WERDELL J, et al. Update of the Quasi-analytical Algorithm (QAA_v6)[DB/OL]. [2018-09-10]. http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf.
[12]
LEE Z P, DU K, VOSS K J, et al. An Inherent-optical-property-centered Approach to Correct the Angular Effects in Water-leaving Radiance[J]. Applied Optics, 2011, 50(19): 3155-3167.
[13]
WINDLE A E, EVERS-KING H, LOVEDAY B R, et al. Evaluating Atmospheric Correction Algorithms Applied to OLCI Sentinel-3 Data of Chesapeake Bay Waters[J]. Remote Sensing, 2022, 14(8): 1881.
[14]
恽才兴, 韩震, 蒋雪中, 等. 海岸带及近海卫星遥感综合应用技术[M]. 北京: 海洋出版社, 2005.
(YUN Cai-xing. Comprehensive Application Technology of Satellite Remote Sensing in Coastal Zone and Offshore Area[M]. Beijing: Ocean Press, 2005. (in Chinese))
[15]
LEE Z P, CARDER K L, DU K P. Effects of Molecular and Particle Scatterings on the Model Parameter for Remote-Sensing Reflectance[J]. Applied Optics, 2004, 43(25): 4957-4964.
[16]
LEE Z P. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications[R]. Mississippi: IOCCG, 2006.
[17]
GREGG W W, CARDER K L. A Simple Spectral Solar Irradiance Model for Cloudless Maritime Atmospheres[J]. Limnology and Oceanography, 1990, 35(8): 1657-1675.
[18]
唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004, 8(1): 37-44.
(TANG Jun-wu, TIAN Guo-liang, WANG Xiao-yong, et al. The Methods of Water Spectra Measurement and Analysis Ⅰ: Above-water Method[J]. Journal of Remote Sensing, 2004, 8(1): 37-44. (in Chinese))
[19]
吕海涛. 多光谱遥感图像数据中薄云雾参数反演及去除[D]. 成都: 电子科技大学, 2021.
( Hai-tao. Retrieval and Removal of Thin Clouds and Haze from Multispectral Remote Sensing Imagery[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese))
[20]
盖颖颖, 王章军, 杨雷, 等. 金沙滩近岸水体叶绿素a和悬浮物遥感反演研究[J]. 国土资源遥感, 2020, 32(3): 129-135.
(GAI Ying-ying, WANG Zhang-jun, YANG Lei, et al. Remote Sensing Retrieval of Chlorophyll-a and Suspended Matter in Coastal Waters of Golden Beach[J]. Remote Sensing for Land & Resources, 2020, 32(3): 129-135. (in Chinese))
[21]
高晨, 徐健, 高丹, 等. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 国土资源遥感, 2019, 31(1): 101-109.
(GAO Chen, XU Jian, GAO Dan, et al. Retrieval of Concentration of Total Suspended Matter from GF-1 Satellite and Field Measured Spectral Data during Flood Period in Poyang Lake[J]. Remote Sensing for Land & Resources, 2019, 31(1): 101-109. (in Chinese))
[22]
李俊生, 张兵, 申茜, 等. 太湖水面多角度遥感反射率光谱测量与方向特性分析[J]. 光谱学与光谱分析, 2013, 33(9): 2506-2511.
(LI Jun-sheng, ZHANG Bing, SHEN Qian, et al. Analysis of Directional Reflectance Properties of Lake Taihu Using Multi-angle Measurements[J]. Spectroscopy and Spectral Analysis, 2013, 33(9): 2506-2511. (in Chinese))
[23]
刘忠华, 李云梅, 吕恒, 等. 太湖春季水体固有光学特性及其对遥感反射率变化的影响[J]. 生态学报, 2012, 32(2): 438-447.
(LIU Zhong-hua, LI Yun-mei, Heng, et al. Analysis of Inherent Optical Properties of Lake Taihu in Spring and Its Influence on the Change of Remote Sensing Reflectance[J]. Acta Ecologica Sinica, 2012, 32(2): 438-447. (in Chinese))
[24]
阎福礼, 刘韶菲, 王世新, 等. 太湖浮游藻类的后向散射分离及其叶绿素a浓度反演[J]. 地球信息科学学报, 2014, 16(6): 989-996.
(YAN Fu-li, LIU Shao-fei, WANG Shi-xin, et al. Phytoplankton Backscattering Coefficients Partitioning and Its Applications in Retrieving Chlorophyll-a Concentrations in Taihu Lake[J]. Journal of Geo-Information Science, 2014, 16(6): 989-996. (in Chinese))
[25]
汪小勇, 唐军武, 李铜基, 等. 水面之上法测量水体光谱的关键技术[J]. 海洋技术, 2012, 31(1): 72-76.
(WANG Xiao-yong, TANG Jun-wu, LI Tong-ji, et al. Key Technologies of Water Spectra Measurements with Above-water Method[J]. Ocean Technology, 2012, 31(1): 72-76. (in Chinese))
[26]
ZHANG T, HUANG M, WANG Z. Estimation of Chlorophyll-a Concentration of Lakes Based on SVM Algorithm and Landsat 8 OLI Images[J]. Environmental Science and Pollution Research, 2020, 27(13): 14977-14990.
[27]
邹志科, 余蕾, 张煜, 等. 基于Sentinel2-L1C的江汉平原水产养殖区水质参数反演[J]. 长江科学院院报, 2023, 40(9): 181-187,194.
(ZOU Zhi-ke, YU Lei, ZHANG Yu, et al. Inversion of Water Quality Parameters in Jianghan Plain Based on Sentinel2-L1C Image[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(9): 181-187. (in Chinese))
[28]
MISHRA S, MISHRA D R. Normalized Difference Chlorophyll Index: a Novel Model for Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters[J]. Remote Sensing of Environment, 2012, 117: 394-406.
[29]
王金梁, 秦其明, 李军, 等. 基于高光谱数据的水体叶绿素a指数反演模型的建立[J]. 农业工程学报, 2014, 30(3): 128-134.
(WANG Jin-liang, QIN Qi-ming, LI Jun, et al. Water Chlorophyll-a Retrieval Index Based on Hyperspectral Data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3): 128-134. (in Chinese))
[30]
滕越, 邹斌, 叶小敏. HY-1C卫星海岸带成像仪叶绿素a浓度反演研究[J]. 海洋学报(中文版), 2022, 44(5): 25-34.
(TENG Yue, ZOU Bin, YE Xiao-min. Study on the Chlorophyll a Concentration Retrieved from HY-1C Satellite Coastal Zone Imager Data[J]. Haiyang Xuebao, 2022, 44(5): 25-34. (in Chinese))
[31]
江彬彬, 张霄宇, 黄大松, 等. 基于GOCI的近岸高浓度悬浮泥沙遥感反演:以杭州湾及邻近海域为例[J]. 浙江大学学报(理学版), 2015, 42(2): 213-220.
(JIANG Bin-bin, ZHANG Xiao-yu, HUANG Da-song, et al. Retrieving High Concentration of Suspended Sediments Based on GOCI: an Example of Coastal Water around Hangzhou Bay, China[J]. Journal of Zhejiang University (Science Edition), 2015, 42(2): 213-220. (in Chinese))
[32]
姚玲爱, 赵学敏, 马千里, 等. 台风强降雨输入水源水库悬浮泥沙的氮磷吸附特性[J]. 环境科学, 2018, 39(8): 3622-3630.
(YAO Ling-ai, ZHAO Xue-min, MA Qian-li, et al. Nitrogen and Phosphorous Adsorption Characteristics of Suspended Solids Input into a Drinking Water Reservoir via Typhoon Heavy Rainfall[J]. Environmental Science, 2018, 39(8): 3622-3630. (in Chinese))

本研究部分数据来源于上海市海洋环境监测预报中心,感谢上海市海洋环境监测预报中心提供的数据支持。

PDF(2307 KB)

Accesses

Citation

Detail

Sections
Recommended

/