The seismic performance of large-span water transfer structures has become increasingly prominent with the growing number of water transfer projects in recent years. In this paper, the effect of differential ground motion caused by topographic effects on the seismic response of Longchuanjiang large-span water transfer inverted siphon in Central Yunnan Water Diversion Project is examined by establishing a three-dimensional finite element model with the calculated results of SH wave horizontal incidence, oblique incidence and vertical incidence as ground motion inputs. The results are compared with those under uniform excitation. Results manifest that differential ground motion in consideration of topographic effect has a significant impact on the force and deformation of important structural elements, and different structural components behave differently. The transverse force and deformation of steel pipes, piers and other elements under horizontal incidence is the largest, followed by that under oblique incidence, uniform excitation, and vertical incidence in sequence, while the differential seismic effect causes a reduction in the transverse internal force of the arch ring. The location of structural stiffness change is more sensitive to differential seismic effect. In conclusion, it is necessary to consider the topographic effect and the influence of incidence angle of ground motion in the seismic design of large-span water transmission inverted siphon structures.
Key words
inverted siphon /
seismic response /
top-bearing box arch bridge /
relative motion method /
SH wave /
topographic effect
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 张金峰.水安全战略下长江流域治理体系建设研究[J].长江技术经济, 2021,5(1):5-8.
[2] 邵旭东.桥梁工程[M].4版.北京:人民交通出版社,2016:283-290.
[3] 杜修力,韩 强,李忠献,等. 5·12汶川地震中山区公路桥梁震害及启示[J].北京工业大学学报,2008,34(12):1270-1279.
[4] 叶爱军,管仲国. 桥梁抗震[M].3版.北京:人民交通出版社,2017:18-24.
[5] 周国良. 河谷地形对多支撑大跨桥梁地震反应影响[D].哈尔滨:中国地震局工程力学研究所,2010.
[6] 周国良,李小军,李铁萍,等. SV波入射峡谷地形对多支撑大跨桥梁地震反应影响分析[J].岩土力学,2012,33(5):1572-1578.
[7] 杨新磊,王海良,王世广,等. 三维河谷场地效应对钢管混凝土空间组合桁架连续梁桥地震响应的影响[J]. 应用基础与工程科学学报,2019,27(3):576-589.
[8] 肖钦心.不规则地形条件下高墩大跨桥梁的地震反应分析[D].重庆:重庆大学,2016.
[9] 柳国环,冯 啸,江大来. 跨越Ⅴ形峡谷桥梁多层介质效应的多点激励破坏模式[J].中国公路学报,2019,32(8):101-113.
[10]胡 蕾,石长征,伍鹤皋. 考虑行波效应的大跨度倒虹吸明钢管地震反应分析[J].水利发电学报,2015,34(1):197-202.
[11]高玉峰,代登辉,张 宁. 河谷地形地震放大效应研究进展与展望[J].防灾减灾工程学报,2021,41(4):734-752.
[12]林继镛,胡志刚,季树凯,等.普渡河倒虹吸管桥组合结构模态分析[J].水利水电技术,2002,33(4):8-11,57.
[13]朱国金,杨小龙,胡馨芝,等. 支撑型式对过活动断裂地面明钢管静动力特性的影响分析[J].水利规划与设计,2019(3):126-135.
[14]王春明. 云南省坝塘工程倒虹吸跨河大桥抗震及减震分析[D].成都:四川大学,2004.
[15]高玉峰, 代登辉, 张 宁. 翡翠河谷地震动地形效应解析分析[J]. 地震学报, 2022, 44(1): 40-49.
[16]ZHANG N, GAO Y F, LI D Y,et al. Scattering of SH Waves Induced by a Symmetrical V-shaped Canyon: A Unified Analytical Solution[J]. Earthquake Engineering and Engineering Vibration, 2012(11): 445-460.
[17]刘美兰. Midas Civil在桥梁结构分析中的应用[M].北京:人民交通出版社,2012:157-159.