Comparative Analysis of Base Flow Separation Methods and Characteristics of Base Flow in the Headwaters of the Yangtze River

LI Guang-lu, FAN Li-juan

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (4) : 185-190.

PDF(2885 KB)
PDF(2885 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (4) : 185-190. DOI: 10.11988/ckyyb.20220328
SCIENTIFIC EXPEDITION AND RESEARCH IN THE HEADWATERS OF THE CHANGJIANG RIVER

Comparative Analysis of Base Flow Separation Methods and Characteristics of Base Flow in the Headwaters of the Yangtze River

  • LI Guang-lu1, FAN Li-juan2
Author information +
History +

Abstract

Baseflow is the major recharge source of river runoff. Analyzing changes in time series of baseflow characteristics using a stable and reliable baseflow separation method is of great importance to water resources planning and ecological environment protection in river basins. Based on measured daily runoff data from 1957 to 2020 at Zhimenda Hydrological station in the headwaters of the Yangtze River, we selected nine methods including filtering method, BFI method and HYSEP method to investigate the characteristic values of baseflow index in the headwaters of the Yangtze River. On this basis, we can determine a baseflow separation method suitable for the Yangtze River, and analyze the time series of baseflow index including annual maximum, annual minimum and annual average values. The results demonstrate that there is a great difference among the results of various methods, with the maximum baseflow index being 0.899 and the minimum being 0.502. The filtering method, especially F4, generates small variance and small inter-annual and intra-annual variations. Thus, we determine that F4 is the method suitable for Zhimenda station. Calculated by F4 method, all the characteristic values of baseflow index at Zhimenda show an increasing trend and will continue to increase in the future. Statistics of the characteristic values using the Bayesian method indicates that baseflow index BFI, annual maximum baseflow, annual minimum baseflow and annual average baseflow of Zhimenda station varied significantly in 2002, 2004, 2017, and 2004, respectively. Warming and wetting of the headwaters is one of the causes of baseflow change. Meanwhile, the continuous rising of BFI suggest that the proportion of baseflow in annual runoff also increases, which impies that the water conservation capacity in the region has been enhancing.

Key words

baseflow separation / baseflow variation / time series analysis / Bayesian change point test / headwaters of the Yangtze River

Cite this article

Download Citations
LI Guang-lu, FAN Li-juan. Comparative Analysis of Base Flow Separation Methods and Characteristics of Base Flow in the Headwaters of the Yangtze River[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(4): 185-190 https://doi.org/10.11988/ckyyb.20220328

References

[1] ZHU Q, SCHMIDT J P, BRYANT R B. Hot Moments and Hot Spots of Nutrient Losses from a Mixed Land Use Watershed. Journal of Hydrology, 2012, 414/415: 393-404.
[2] 莫崇勋, 谢燕平, 班华珍, 等. 不同基流分割方法在澄碧河的适用性探讨. 南水北调与水利科技(中英文), 2020, 18(2): 86-92.
[3] 郝 璐, 孙 阁. 城市化对流域生态水文过程的影响研究综述. 生态学报, 2021, 41(1): 13-26.
[4] 马秋梅, 李 玮, 王 毅, 等. 基流对亚热带农业流域氮素输出的贡献研究. 环境科学, 2016, 37(4): 1371-1378.
[5] 陈利群, 刘昌明, 李发东. 基流研究综述. 地理科学进展, 2006, 25(1): 1-15.
[6] 黄国如. 流量过程线的自动分割方法探讨. 灌溉排水学报, 2007, 26(1): 73-78.
[7] 钱开铸, 吕京京, 陈 婷, 等. 基流计算方法的进展与应用. 水文地质工程地质, 2011, 38(4): 20-25, 31.
[8] 徐榕焓, 王小刚, 郑 伟. 基流分割方法研究进展. 水土保持通报, 2016, 36(5): 352-359.
[9] 徐磊磊, 刘敬林, 金昌杰, 等. 水文过程的基流分割方法研究进展. 应用生态学报, 2011, 22(11):3073-3080.
[10] 陈利群, 刘昌明, 李发东. 基流研究综述. 地理科学进展, 2006, 25(1): 1-15.
[11] 赵玉友, 耿鸿江, 潘辉学. 基流分割问题评述. 工程勘察, 1996, 24(2): 30-32.
[12] 董晓华, 邓 霞, 薄会娟, 等. 平滑最小值法与数字滤波法在流域径流分割中的应用比较. 三峡大学学报(自然科学版), 2010, 32(2): 1-4.
[13] 王 冠, 鲁程鹏, 李姝蕾, 等. 五种基流分割方法在长江螺山站的应用对比研究. 水资源与水工程学报, 2015, 26(3): 118-123.
[14] 段琪彩, 方绍东, 王 杰, 等. 昆明市松华坝水源地水源涵养能力时空变化研究. 中国农村水利水电, 2012(10): 170-173.
[15] 周旭东, 杨 涛. 三种基流分割方法在黄河源区应用中的对比分析. 水电能源科学, 2014, 32(10): 18-21.
[16] WAHL K L, WAHL T L. Determining the Flow of Comal Springs at New Braunfels,Texas. Proceedings of Texas Water, 1995, 95(6): 16-17.
[17] 夏 露, 毕如田, 宋孝玉, 等. 砚瓦川流域河川基流变化规律及其驱动因素. 生态学报, 2021, 41(21): 8430-8442.
[18] STADNYK T A,GIBSON J J,LONGSTAFFE F J. Basin-Scale Assessment of Operational Base Flow Separation Methods. Journal of Hydrologic Engineering, 2015, 20(5): 1-11.
[19] DAI Z J, CHU A, DU J Z, et al. Assessment of Extreme Drought and Human Interference on Baseflow of the Yangtze River. Hydrological Processes, 2010, 24(6): 749-757.
[20] NATHAN R J, MCMAHON T A. Evaluation of Automated Techniques for Base Flow and Recession Analyses. Water Resources Research, 1990, 26(7): 1465-1473.
[21] CHAPMAN T G. Comment on “Evaluation of Automated Techniques for Base Flow and Recession Analyses” by R. J. Nathan and T. A. McMahon. Water Resources Research, 1991, 27(7): 1783-1784.
[22] CHAPMAN T G,MAXWELL A I. Baseflow Separation-comparison of Numerical Methods with Tracer Experiments//Proceedings of the 23rd Hydrology and Water Resources Symposium. Hobart: Institution of Engineers, Australia, 1996: 539-545.
[23] BOUGHTON W C. A Hydrograph-based Model for Estimating the Water Yield of Ungauged Catchments//Proceedings of the Hydrology and Water Resources Symposium. Newcastle: Institution of Engineers, Australia,1993: 317-324.
[24] 吴珍妮, 穆兴民, 高 鹏, 等. 北洛河上游基流分割适宜性方法及基流特征. 人民黄河, 2019, 41(3): 94-99.
[25] 王晨杨, 闫铁柱, 翟丽梅, 等.密云水库白河流域基流演变特征研究.生态学报,2022,42(8):3181-3190.
[26] 杨 蕊, 王 龙, 韩春玲. 9种基流分割方法在南盘江上游的应用对比. 云南农业大学学报(自然科学), 2013, 28(5): 707-712.
[27] 冯新灵, 罗隆诚, 冯自立. 中国近50年降水变化趋势及突变的Hurst指数试验. 干旱区地理, 2009, 32(6): 859-866.
[28] 姜丽霞, 王晾晾, 吕佳佳, 等. 基于Hurst指数的黑龙江省作物生长季降水趋势研究. 气象与环境学报, 2020, 36(2): 70-77.
[29] 熊立华, 周 芬, 肖 义, 等. 水文时间序列变点分析的贝叶斯方法. 水电能源科学, 2003, 21(4): 39-41, 61.
[30] 樊 辉, 刘艳霞, 黄海军. 1950—2007年黄河入海水沙通量变化趋势及突变特征. 泥沙研究, 2009(5): 9-16.
[31] 潘雅婧, 王仰麟, 彭 建, 等. 基于小波与R/S方法的汉江中下游流域降水量时间序列分析. 地理研究, 2012, 31(5): 811-820.
[32] 谢 平, 雷红富, 陈广才, 等. 基于Hurst系数的流域降雨时空变异分析方法. 水文, 2008, 28(5): 6-10.
[33] 杜嘉妮, 蔡宜晴, 王 岗. 长江源区径流变化归因分析. 水文, 2021, 41(6): 73-78.
PDF(2885 KB)

Accesses

Citation

Detail

Sections
Recommended

/