Data Mining Method for Bank Slope Monitoring Based on Association Rules

CHEN Bo, ZHAN Ming-qiang, HUANG Zi-shen

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (8) : 58-64.

PDF(4515 KB)
PDF(4515 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (8) : 58-64. DOI: 10.11988/ckyyb.20210457
ENGINEERING SAFETY AND DISASTER PREVENTION

Data Mining Method for Bank Slope Monitoring Based on Association Rules

  • CHEN Bo1,2, ZHAN Ming-qiang1,2, HUANG Zi-shen3
Author information +
History +

Abstract

The monitoring data of slope records the whole process information of slope instability disaster.The data mining of bank slope monitoring database runs slowly.FP-Growth association rule algorithm is introduced into slope safety monitoring data mining.The causal association rule and spatial association rule in slope monitoring data are mined by FP-Growth association rule algorithm.The causality between environmental variables and affected variables of slope monitoring and the correlation among affected variables of multiple measuring points are mined respectively.Effective information reflecting slope operation characteristics is extracted from slope spatio-temporal monitoring data containing multi-measuring points and multi-items.Calculation example shows that FP-Growth association rule algorithm is simple in implementation and reliable in mining results,hence providing a good approach for monitoring data mining of similar reservoir bank slopes.

Key words

reservoir bank slope monitoring / data mining / FP-Growth algorithm / cause-effect association rule / spatial association rule

Cite this article

Download Citations
CHEN Bo, ZHAN Ming-qiang, HUANG Zi-shen. Data Mining Method for Bank Slope Monitoring Based on Association Rules[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(8): 58-64 https://doi.org/10.11988/ckyyb.20210457

References

[1] 张治强,蔡嗣经,马平波.数据挖掘在岩质边坡稳定性预测中的应用[J].北京科技大学学报,2003(2):103-105,146.
[2] 马水山,王志旺,张 漫.基于关联规则挖掘的滑坡监测资料分析[J].长江科学院院报,2004,21(5):48-51.
[3] 刘小珊,罗文强,李飞翱,等.基于关联规则的滑坡演化阶段判识指标[J].地质科技情报,2014,33(2):160-164.
[4] 揭 奇,施 斌,罗文强,等.基于DFOS的边坡多场信息关联规则分析[J].工程地质学报,2015,23(6):1146-1152.
[5] 王林伟,徐卫亚,张金龙.边坡岩体变形特征的关联规则挖掘研究[C]//Intelligent Information Technology Application Association.Proceedings of the 2011 International Conference on Future Computer Science and Application(FCSA 2011 V1).Intelligent Information Technology Application Association:智能信息技术应用学会,2011:4.
[6] 赵久彬,刘元雪,刘 娜,等.FRPFP模型滑坡监测预警关联规则挖掘分析:以三峡库区江津到奉节段为例[J].岩土工程学报,2019,41(3):492-500.
[7] 段功豪,牛瑞卿,咬登魁.基于关联规则算法的滑坡判据动态提取研究[J].安全与环境工程,2014,21(6):47-52.
[8] ZHAO X,YAN L,YANG L,et al.Deformation Characteristics and Influential Factors of a Toppling Rock Slope Based on the Grey Relational Analysis[J].European Journal of Environmental and Civil Engineering,2020,doi:10.1080/19648189.2020.1763850.
[9] 赵志峰.基于位移监测信息的岩石高边坡安全评价理论和方法研究[D].南京:河海大学,2007.
[10] 郑霞忠,陈国梁,邹 韬.考虑时间序列关联的大坝监测异常数据清洗[J].水力发电,2020,46(4):111-114,125.
[11] HAN J,PEI J,YIN Y,et al.Mining Frequent Patterns without Candidate Generation:A Frequent-Pattern Tree Approach[J].Data Mining & Knowledge Discovery,2004,8(1):53-87.
[12] ZHAO N H,HU B,YI Q L,et al.The Coupling Effect of Rainfall and Reservoir Water Level Decline on the Baijiabao Landslide in the Three Gorges Reservoir Area,China[J].Geofluids,2017(12):1-12.
[13] 王振武.数据挖掘算法原理与实现[M].北京:清华大学出版社,2017.
PDF(4515 KB)

Accesses

Citation

Detail

Sections
Recommended

/