Carbon, Nitrogen, and Phosphorus in Sediments of Honghu Lake: Spatial Distribution and Pollution Evaluation

PAN Xiong, GU Wen-jun, LI Huan, HU Yuan, ZHANG Wei, LIN Li

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (8) : 41-46.

PDF(4362 KB)
PDF(4362 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (8) : 41-46. DOI: 10.11988/ckyyb.20200640
WATER ENVIRONMENT AND WATER ECOLOGY

Carbon, Nitrogen, and Phosphorus in Sediments of Honghu Lake: Spatial Distribution and Pollution Evaluation

  • PAN Xiong1,2, GU Wen-jun3, LI Huan1,2, HU Yuan1,2, ZHANG Wei1,2, LIN Li1,2
Author information +
History +

Abstract

Honghu Lake, the seventh largest freshwater lake in China, has been undergoing serious eutrophication in recent years. Investigating into the content and distribution characteristics of nitrogen, phosphorus and organic matters in the sediment of Honghu lake is of great significance for acquiring its eutrophication status and ecological risks of nitrogen and phosphorus pollution. In the present research, we deployed eight sampling points and collected 50 cm height columnar sediments in October 2019. By measuring the content of total nitrogen (TN), total phosphorus (TP) and organic matters (OM) of sediment specimens from different depths, we examined the spatial distribution patterns of TN, TP and OM and their correlations. Furthermore, we evaluated the corresponding pollution status by using comprehensive pollution index. Results manifested that the TN content of Honghu sediments ranged from 467.8-8 454.5 mg/kg, averaging 2 167 mg/kg, indicating heavy pollution. Nearly half of surface sediments presented a TN content over 5 000 mg/kg. TP content ranged from 502.7 to 1 252.4 mg/kg, with an average value of 693.8 mg/kg. Except for Yangchai lake which suffered heavy pollution, most of the areas were subjected to medium TP pollution. The content of organic matters ranged from 5.0% to 24.9%, with an average value of 9.6%, also implying heavy pollution. In vertical scale, TN, TP and OM accumulated significantly in the surface layer of the sediments from 0 to 20 cm, and then declined rapidly with the increase of depth.

Key words

water environment / sediment / nitrogen / phosphorus / organic matter / pollution evaluation / distribution characteristics / Honghu Lake

Cite this article

Download Citations
PAN Xiong, GU Wen-jun, LI Huan, HU Yuan, ZHANG Wei, LIN Li. Carbon, Nitrogen, and Phosphorus in Sediments of Honghu Lake: Spatial Distribution and Pollution Evaluation[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(8): 41-46 https://doi.org/10.11988/ckyyb.20200640

References

[1] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling Eutrophication: Nitrogen and Phosphorus[J]. Science, 2009, 323(5917): 1014-1015.
[2] ZHAO H C, ZHANG L, WANG S R, et al. Features and Influencing Factors of Nitrogen and Phosphorus Diffusive Fluxes at the Sediment-Water Interface of Erhai Lake[J]. Environmental Science and Pollution Research, 2018, 25: 1933-1942.
[3] SHAUGHNESSY A R, SLOAN J J, CORCORAN M J, et al. Sediments in Agricultural Reservoirs Act as Sinks and Sources for Nutrients over Various Timescales[J]. Water Resources Research, 2019, 55(7): 5985-6000.
[4] EZZATI G, FENTON O, HEALY M G, et al. Impact of P Inputs on Source-Sink P Dynamics of Sediment along an Agricultural Ditch Network[J]. Journal of Environmental Management, 2020, 257: 109988, doi: 10.1016/j.jenvman.2019.109988.
[5] WU M, HUANG S L, WEN W, et al. Nutrient Distribution within and Release from the Contaminated Sediment of Haihe River[J]. Journal of Environment Science, 2011, 23(7): 1086-1094.
[6] ELSER J J,BRACKEN M E,CLELAND E E,et al. Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems[J]. Ecology Letters,2007,10(12):1135-1142.
[7] ZHANG Y, SONG C, JI L, et al. Cause and Effect of N/P Ratio Decline with Eutrophication Aggravation in Shallow Lakes[J]. Science of Total Environment, 2018, 627: 1294-1302.
[8] 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探[J]. 湖泊科学, 2002,14(3):193-202.
[9] STONE R. China Aims to Turn Tide Against Toxic Lake Pollution[J]. Science, 2011,333(6047): 1210-1211.
[10]郑 煌, 杨 丹, 金梦云, 等.洪湖沉积柱中磷形态的垂直分布及指示意义[J]. 中国环境科学, 2017,37(4): 1540-1547.
[11]胡立嵩, 祁士华.洪湖沉积物柱样中氮、磷的垂直分布特征[C]//中国矿物岩石地球化学学会.全国环境生态地球化学调查与评价论文摘要集.北京:中国矿物岩石地球化学学会,2006:43-44.
[12]HJ/T 346—2007,水质 硝酸盐氮的测定 紫外分光光度法(试行)[S].北京:中国环境科学出版社,2010.
[13]RUBAN V, LOPEZSANCHEZ J F, PARDO P, et al. Selection and Evaluation of Sequential Extraction Procedures for the Determination of Phosphorus Forms in Lake Sediment[J]. Journal of Environmental Monitoring, 1999, 1(1): 51-66.
[14]GB 9834—88, 土壤有机质测定法[S].北京:中国标准出版社,1988.
[15]WANG S H, JIANG X X, ZHONG L X, et al. Seasonal Occurrence Characteristics of Different Forms of Nitrogen in the Sediments of Chaohu Lake[J]. Environmental Science, 2010, 31(4): 946-953.
[16]YANG W Q, XIAO H, LI Y, et al. Vertical Distribution and Release Characteristics of Nitrogen Fractions in Sediments in the Estuaries of Dianchi Lake, China[J]. Chemical Speciation and Bioavailability, 2017, 29(1): 110-119.
[17]PAN X, LIN L, HUANG Z,et al. Distribution Characteristics and Pollution Risk Evaluation of the Nitrogen and Phosphorus Species in the Sediments of Lake Erhai, Southwest China[J]. Environmental Science and Pollution Research, 2019, 26(3): 22295-22304.
[18]陈 超, 钟继承, 邵世光, 等. 太湖西北部典型疏浚/对照湖区内源性营养盐释放潜力对比[J]. 湖泊科学, 2014,26(6): 829-836.
[19]苗 慧, 沈 峥, 蒋 豫, 等. 巢湖表层沉积物氮、磷、有机质的分布及污染评价[J]. 生态环境学报, 2017,26(12): 21-25.
[20]杜奕衡,刘 成,陈开宁,等.白洋淀沉积物氮磷赋存特征及其内源负荷[J]. 湖泊科学,2018,30(6): 69-83.
[21]WANG S R, ZHENG B, CHEN C, et al. Thematic Issue: Water of the Erhai and Dianchi Lakes[J]. Environmental Earth Science, 2015, 74(5): 3685-3688.
[22]ZHU Y, SHAN B, HUANG J Y, et al. In situ Biochar Capping is Feasible to Control Ammonia Nitrogen Release from Sediments Evaluated by DGT[J]. Chemical Engineering Journal, 2019, 374: 811-821.
[23]LI H, WANG Y, SHI L Q, et al. Distribution and Fractions of Phosphorus and Nitrogen in Surface Sediments from Dianchi Lake, China[J]. International Journal of Environmental Research, 2012, 6(1): 195-208.
[24]吴亚林, 李帅东, 江俊武, 等. 百年来滇池沉积物中不同形态氮分布及埋藏特征[J]. 环境科学, 2017,38(2): 517-526.
[25]王小雷, 杨 浩, 顾祝军, 等.抚仙湖沉积物中营养盐和粒度垂向分布及相关性研究[J]. 环境工程技术学报, 2014,4(5): 353-360.
[26]AN W C, LI X M. Phosphate Adsorption Characteristics at the Sediment-Water Interface and Phosphorus Fractions in Nansi Lake, China, and Its Main Inflow Rivers[J]. Environmental Monitoring and Assessment, 2009, 148(1/2/3/4): 173-184.
[27]向速林, 周文斌. 鄱阳湖沉积物中磷的赋存形态及分布特征[J]. 湖泊科学, 2010,22(5): 649-654.
[28]杨 洋, 刘其根, 胡忠军, 等.太湖流域沉积物碳氮磷分布与污染评价[J]. 环境科学学报, 2014,34(12): 3057-3064.
[29]ZHANG T, WANG X, JIN X. Variations of Alkaline Phosphatase Activity and P Fractions in Sediments of a Shallow Chinese Eutrophic Lake (Lake Taihu) [J]. Environmental Pollution, 2007, 150(2): 288-294.
[30]王圣瑞, 倪 栋, 焦立新, 等.鄱阳湖表层沉积物有机质和营养盐分布特征[J]. 环境工程技术学报, 2012,2(1): 23-28.
[31]YU J H, FAN C X, ZHONG J C, et al. Evaluation of In situ Simulated Dredging to Reduce Internal Nitrogen Flux across the Sediment-Water Interface in Lake Taihu, China[J]. Environmental Pollution, 2016, 214: 866-877.
[32]LEIVUORI M, NIEMISTO L. Sedimentation of Trace Metals in the Gulf of Bothnia[J]. Chemosphere, 1995, 31(8): 3839-3856.
PDF(4362 KB)

Accesses

Citation

Detail

Sections
Recommended

/