Vertical Distribution Law of Gradation of Suspended SedimentParticles in Turbulent Region Based on Rouse Formula

MA Zi-pu, HUANG Bang-you

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (5) : 11-14.

PDF(3749 KB)
PDF(3749 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (5) : 11-14. DOI: 10.11988/ckyyb.20190093
RIVER LAKE SEDIMENTATION AND REGULATION

Vertical Distribution Law of Gradation of Suspended SedimentParticles in Turbulent Region Based on Rouse Formula

  • MA Zi-pu1,2, HUANG Bang-you3
Author information +
History +

Abstract

The vertical distribution formulas of suspended sediments’ particle size and gradation in turbulent flow region are derived respectively based on the Rouse formula and the formula of sediment particle settling velocities in turbulent flow. The former directly quantifies the vertical distribution law of sediment particles being “fine in the upper and coarse in the lower”, while the latter can be used to calculate the suspended sediment’s gradation in different water layers and the total gradation in vertical direction. The formula of particle size distribution is applied to a practical example to calculate the suspended sediment’s gradation in different water layers. Results suggest that the gradation is obviously in the law of “fine in the upper and coarse in the lower”. The farther away from the bed the water layer, the larger the proportion of fine particles, the more uniform the particle size distribution. In consideration of the influence of suspension height, the maximum suspension height of suspended sediments with the largest particle size is taken as the demarcation below which the gradation is in equal width, and above which the gradation distributes narrowly in the lower whereas widely in the upper.

Key words

gradation of suspended sediment / vertical distribution formula / Rouse formula / relative maximum suspension height / turbulent flow region

Cite this article

Download Citations
MA Zi-pu, HUANG Bang-you. Vertical Distribution Law of Gradation of Suspended SedimentParticles in Turbulent Region Based on Rouse Formula[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(5): 11-14 https://doi.org/10.11988/ckyyb.20190093

References

[1] ROUSE H. Modern Conceptions of the Mechanics of Turbulence[J]. Transactions of the American Society of Civil Engineers, 1937, 102(1): 463-505.
[2] VELIKANOV M A. Alluvial Process[M]. Moscow: State Publishing House for Physical and Mathematical Literature, 1958: 241- 245.
[3] DREW D A. Turbulent Sediment Transport over a Flat Bottom Using Momentum Balance[J]. Journal of Applied Mechanics, 1975,42(1): 38-44.
[4] MCTIGUE D F. Mixture Theory for Suspended Sediment Transport [J]. ASCE, 1981, 107(6): 659-673.
[5] 蔡树棠.相似理论和泥沙的垂直分布[J].应用数学和力学,1982,3(5):605-612.
[6] 邵学军,夏震寰.悬浮颗粒紊动扩散系数的随机分析[J].水利学报,1990,21(10):32-40.
[7] 汪富泉,丁 晶,曹叔尤,等.论悬移质含沙量沿垂线的分布[J].水利学报,1998,29(11):44-49.
[8] 倪晋仁,梁 林.水沙流中的泥沙悬浮[J].泥沙研究,2000(1):7-19.
[9] 赵连军,吴国英,王嘉仪.不平衡输沙含沙量垂线分布理论研究展望[J].水力发电学报,2015,34(4):63-69.
[10]谢葆玲.实验曲线函数关系式的确定[J].泥沙研究,1983(2):64-66.
[11]杨国录,王运辉.实测悬移质级配及分组含沙量修正问题[J].武汉水利电力学院学报,1984,17(4):115-127.
[12]熊治平.河流泥沙级配曲线函数表达式及其检验[J].泥沙研究,1992(2):76-79.
[13]熊治平.悬移质泥沙级配沿垂线分布公式探求[J].武汉水利电力大学学报,1999,32(3):51-54.
[14]侯晖昌.河流动力学基本问题[M].北京:水利出版社,1982:93-102.
[15]张红武.悬移质级配的理论计算[C]∥黄委会水科所科学研究论文集(第1集).郑州:河南科学技术出版社,1989:155-161.
[16]曹志芳.悬移质泥沙级配公式及其应用[J].武汉水利电力大学学报,1996,29(1):115-118.
[17]王延召,张耀哲.有关悬移质级配垂向分布计算方法的改进[J].中国农村水利水电,2018(3):186-189,195.
[18]王昌杰.河流动力学[M].北京:人民交通出版社,2001.
[19]韩其为.非均匀悬移质不平衡输沙[M].北京:科学出版社,2013.
[20]武汉水利电力学院河流泥沙工程学教研室.河流泥沙工程学(上册)[M].北京:水利出版社,1981.
PDF(3749 KB)

Accesses

Citation

Detail

Sections
Recommended

/