The operation of the Three Gorges Project (TGP) had changed the condition of discharge and sediment. Curved reaches in the Jingjiang River all witnessed erosion in convex bank and deposition in concave bank, detrimental to channel navigation. In order to study the evolution characteristics and influence factors of curved reach, we analyzed the evolution causes and estimated the future changes of Jingjiangmen reach of lower Jingjiang River as an example according to measured topographic data in recent 15 years after the impoundment of TGR via logic reasoning and statistical analysis. Results demonstrated that after the operation of TGP, the convex bank of Jingjiangmen reach showed a trend of continuous scouring year by year, and the position of scouring moved downwards continuously, which deteriorated the channel navigation condition. When the duration of bank-full discharge (20 000~25 000 m3/s) was longer than 15 days in a year, convex bank was scoured and moved backwards, while on the contrary, when the duration of bank-full discharge was shorter than 15 days of the year, the convex bank was silted. The annual variations of convex bank had a good corresponding relationship with sediment concentration, especially fine sand content (d<0.125 mm), synchronously increasing or decreasing. After the first phase implementation project of Jingjiang Reach in 2014, given the discharge and sediment conditions, convex bank wound continue scouring, giving rise to double-groove in dry season and more deteriorated navigation condition. In conclusion, changes in discharge and sediment conditions are the major causes of bend reach evolution. In years of long flood duration with small sediment discharge, Jingjiangmen reach would most likely experience navigation obstruction. These conclusions provide reference for the governance of meandering channels in lower Jingjiangmen reach.
Key words
relationship between bank and groove /
convex bank /
characteristics discharge /
duration /
water and sediment process /
navigation channel change /
lower Jingjiang River /
Jingjiangmen bend reach
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 周祥恕,刘怀汉,黄成涛,等. 下荆江莱家铺弯道河床演变及航道条件变化分析. 人民长江,2013,44(1):26-29.
[2] 樊咏阳,张 为,韩剑桥,等. 三峡水库下游弯曲河型演变规律调整及其驱动机制. 地理学报,2017,72(3):420-431.
[3] 张卫军,魏立鹏,渠 庚. 三峡工程运用后荆江不同河型河道演变分析. 水利科技与经济,2013,19(11):56-59.
[4] 阮成堂. 清水下泄条件下沙质弯曲河段滩槽演变规律分析. 水道港口,2016,37(4):399-404.
[5] 朱玲玲,许全喜,熊 明. 三峡水库蓄水后下荆江急弯河道凸冲凹淤成因. 水科学进展,2017,28(2):193-202.
[6] 谭天琪. 三峡工程建成后下荆江河段河床演变及其影响. 建筑工程技术与设计,2016(13):1966.
[7] 陆永军,刘建民. 长江中游典型浅滩演变与整治研究. 中国工程科学,2002,4(7):40-45.
[8] 余文畴. 长江分汊河道口门水流及输沙特性. 长江水利水电科学研究院院报,1987,4(1):14-25.
[9] 尹学良. 黄河下游冲淤特性及其改造问题. 泥沙研究,1980(1):75-82.
[10] 周润峰. 荆江门河段削矶整治. 湖南水利水电,2005(6):12-13.
[11] 岳红艳,姚仕明,朱永辉,等. 二元结构河岸崩塌机理试验研究. 长江科学院院报,2014,31(4):26-30.
[12] 刘昭希,王 军,宗全利,等. 含水率变化对荆江河岸黏性土体力学特性的影响. 长江科学院院报,2019,36(4):32-38.
[13] 王 博,姚仕明,岳红艳,等. 三峡水库运用后武汉天兴洲分汊河段演变规律及趋势. 长江科学院院报,2015,32(8):1-8.
[14] 张瑞瑾. 河流动力学. 武汉:武汉大学出版社,2007:71-86.
[15] 闫金波,唐庆霞,邹 涛. 三峡坝下游河道造床流量与水流挟沙力的变化. 长江科学院院报,2014,31(2):114-118.
[16] 朱玲玲,张 为,葛 华. 三峡水库蓄水后荆江典型分汊河段演变机理及发展趋势研究. 水力发电学报,2011,30(5):106-113.
[17] 王业祥,李义天,朱玲玲. 长江中游嘉鱼-燕子窝河段演变机理及发展趋势研究. 泥沙研究,2012(1):1-6.