Experimental Study on Flexural Bearing Capacity of Micropiles

CHEN Zai-qian, SHUAI Shi-jie, PU Shu-tao, ZHANG Li-hua, RAO Jun-ying, LIU Deng-kai, XIE Cai-jin

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (2) : 100-105.

PDF(9716 KB)
PDF(9716 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (2) : 100-105. DOI: 10.11988/ckyyb.20181056
ROCK SOIL ENGINEERING

Experimental Study on Flexural Bearing Capacity of Micropiles

  • CHEN Zai-qian1, SHUAI Shi-jie1, PU Shu-tao1, ZHANG Li-hua1, RAO Jun-ying2, LIU Deng-kai2, XIE Cai-jin2
Author information +
History +

Abstract

Micropile is superior to conventional retaining structures in the emergency treatment of landslide, embankment slope, or foundation pit with poor stability. Since the bearing capacity and failure characteristics of different micropiles vary, we improved the yas-2000 compression testing machine and applied it to measuring the flexural bearing capacity of three different micropiles: reinforced concrete pile, steel pipe concrete filled rebar pile, and steel pipe concrete filled I-beam pile. Results unveiled that the whole process of force acting on reinforced concrete pile can be divided according to three phases, namely, uncracked phase, cracked phase, and destruction phase. The stress process of steel pipe concrete filled rebar pile, and steel pipe concrete filled I-beam pile can be divided into four phases, compaction phase, elastic phase, elasto-plastic phase, and reinforcement phase. In addition, comparison of the load-displacement curves of these three micropiles revealed that given the same diameter, steel pipe concrete filled I-beam pile has the largest flexural bearing capacity with the ultimate bending moment reaching 209.21 kN·m.

Key words

micropiles / flexural capacity / reinforced concrete pile / steel pipe concrete filled rebar pile / steel pipe concrete filled I-beam piles

Cite this article

Download Citations
CHEN Zai-qian, SHUAI Shi-jie, PU Shu-tao, ZHANG Li-hua, RAO Jun-ying, LIU Deng-kai, XIE Cai-jin. Experimental Study on Flexural Bearing Capacity of Micropiles[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(2): 100-105 https://doi.org/10.11988/ckyyb.20181056

References

[1] 卢书强, 易庆林, 易 武,等. 三峡库区树坪滑坡变形失稳机制分析. 岩土力学, 2014,35(4): 1123-1130.
[2] 张 明, 胡瑞林,殷跃平,等.川东缓倾红层中降雨诱发型滑坡机制研究.岩石力学与工程学报,2014,33(2):3783-3790.
[3] ZHANG Xu, TAN Ju-hong. Research on Majiagou Landslide Stability Analysis and Control Design[C]∥ Proceedings of the 2012 International Conference on Cybernetics and Informatics. Chongqing, China, September 21-23, 2012: 595-602.
[4] 刘传正. 中国崩塌滑坡泥石流灾害成因类型.地质论评, 2014, 60(4): 858-868.
[5] 谢建清. 滑坡治理方法及其应用实例. 地质与勘探, 1995(3): 28-32.
[6] SCHUSTER R L, KRIZEK R. Landslides: Analysis and Control. Washington DC: Transportation Research Board, 1978.
[7] ARMOUR T. Micropile Design and Construction Guidelines Implementation Manual. Washington DC: Federal Highway Administration, 2000.
[8] 周德培, 王焕龙, 孙宏伟, 等. 微型桩组合抗滑结构及其设计理论. 岩石力学与工程学报, 2009, 28(7): 1353-1362.
[9] 李昌龙. 山区公路滑坡微型桩受力机理及应用研究. 贵阳: 贵州大学, 2016.
PDF(9716 KB)

Accesses

Citation

Detail

Sections
Recommended

/