In the aim of obtaining the criteria and precursor characteristics of critical rock fracture, uniaxial compression acoustic emission experiment was performed on granite to acquire the time and frequency domain signal information of acoustic emission during the whole process of rock deformation and rupture. According to the spectrum analysis theory, the dominant-frequency value of the waveform signal was extracted, and the parameters of time and frequency domain are combined to analyze the variation features and the identification information of rupture precursors. Results unveiled that the acoustic emission event rate alternated between high and low values before the high-stress stage, and between high and medium values after the high-stress stage; the cumulative number of events climbed rapidly with increasing load, but suddenly tended to be gentle at very high stresses. The energy rate and cumulative energy can be divided into two active periods and one slowly releasing period with the loading process. The dominant-frequency can be divided into five frequency bands of 1#-5#, therein the 2# frequency band corresponded to the main rupture mode of rock’s rupture process, the 3#, 4#, 5# frequency bands belonged to the high frequency band, and the 1# frequency band belongs to the low frequency band, with the high and low frequency bands respectively corresponding to the initiation of microcracks and the formation of large cracks by microcrack closure. The parameters of time-frequency domain in the acoustic emission are of good precursor recognition characteristics. The time response sequence of rupture precursor follows the order of dominant-frequency, event rate, energy rate and cumulative energy, and then cumulative number of events.
Key words
rock mechanics /
acoustic emission /
time and frequency domain /
uniaxial compression test /
precursor characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 张艳博, 梁 鹏, 刘祥鑫, 等. 基于声发射信号主频和熵值的岩石破裂前兆试验研究.岩石力学与工程学报,2015, 34(增刊 1): 2959-2967.
[2] 李俊平.声发射技术在岩土工程中的应用.岩石力学与工程学报,1995,14(4):371-376.
[3] 杨瑞峰,马铁华.声发射技术研究及应用进展.中北大学学报(自然科学版),2006,27(5):456-461.
[4] 腾山邦久.声发射(AE)技术的应用.冯夏庭,译.北京:冶金工业出版社,1996:13-16.
[5] MAJEWSKA ZIETEK J. Acoustic Emission and Sorptive Deformation Induced in Coals of Various rank by the Sorption-Desorption of Gas.Acta Geophysica, 2007, 55(3): 324-343.
[6] 李宏艳,康立军,徐子杰,等. 不同冲击倾向煤体失稳破坏声发射先兆信息分析.煤炭学报,2014,39(2):384-388.
[7] 赵毅鑫,姜耀东,祝 捷,等.煤岩组合体变形破坏前兆信息的试验研究.岩石力学与工程学报,2008,27(2):339-346.
[8] 付 斌,周宗红,王海泉,等.大理岩单轴循环加卸载破坏声发射先兆信息研究.煤炭学报,2016,41(8):1946-1953.
[9] 曾 鹏,刘阳军,纪洪广,等.单轴压缩下粗砂岩临界破坏的多频段声发射耦合判据和前兆识别特征.岩土工程学报,2017,39(3):509-517.
[10] 何满潮,赵 菲,张 昱,等. 瞬时应变型岩爆模拟试验中花岗岩主频特征演化规律分析.岩土力学,2015,36(1):1-8,33.
[11] 黄晓红,席 婷,张艳博,等. 石灰岩声发射分析及源定位研究.矿业研究与开发,2014,34(3):70-73.
[12] 张艳博, 于光远, 田宝柱, 等. 花岗岩巷道岩爆声发射信号主频特性试验研究.岩土力学,2017, 38(5): 1258-1266.
[13] 贾雪娜. 应变岩爆实验的声发射本征频谱特征.北京: 中国矿业大学,2013.
[14] CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC Coupled Numerical Simulation of AE in Large-scale Underground Excavations. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550-564.
[15] 李世愚, 和泰名,尹祥础,等. 岩石断裂力学导论.合肥: 中国科学技术大学出版社,2010: 282-283.
[16] 魏嘉磊,刘善军,吴立新,等.含孔岩石双轴加载过程声发射多参数特征对比分析.采矿与安全工程学报,2015,32(6):1017-1025.
[17] 张艳博, 梁 鹏, 田宝柱, 等. 花岗岩灾变声发射信号多参量耦合分析及主破裂前兆特征试验研究.岩石力学与工程学报,2016,35(11):2248-2258.