Pseudo-static method has some limitations in obtaining the minimum safety factor to evaluate the stability of slope. In view of this, we developed a method for calculating the time-history of safety factor using FISH language through the secondary development platform of the finite-difference software FLAC3D. Via the modified Mohr-Coulomb constitutive model we simulated the slope stability of geogrid-reinforced high earth-rock dams, and analyzed the slope stability of geogrid-reinforced high earth-rock dams according to the time-history of safety factors. According to the simulation, we obtained the changes of safety factor in the presence of varying geogrid parameters (including material strength, geogrid length, and geogrid spacing), and determined the optimum layout of geogrids. Results demonstrated that we could analyze the time-history of safety factor by the time-history graph of dynamic safety factor, and also analyze the start time of the failure of dam slope. Moreover, the reinforcement effect reaches the optimum when the elastic modulus of geogrid is 2.5 GPa and the spacing of geogrids is 4 m. The simulation results of Shuangjiangkou Rockfill Dam are basically consistent with the results in the feasibility research results. The geogrid layout is proved rational, and the simulation method in the present paper is effective.
Key words
high earth-rockfill dams /
seismic action /
geogrid /
stability analysis /
reinforcement effectiveness
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 苏鹏程,韦方强,程尊兰.5·12汶川地震对磨子沟的影响及震后泥石流活动状况[J].长江科学院院报,2012,29(2):16-23.
[2] BELGHALI M, SAADA Z,GARNIER D, et al. Pseudo-static Stability Analysis of Rock Slopes Reinforced by Passive Bolts Using the Generalized Hoek-Brown Criterion[J].Journal of Rock Mechanics and Geotechnical Engineering, 2017,9(4):657-670.
[3] 栾茂田,李 湛,范庆来.土石坝拟静力抗震稳定性分析与坝坡地震滑移量估算[J].岩土力学,2007,28(2):224-230.
[4] 朱亚林,孔宪京,邹德高,等.土工格栅加筋高土石坝的动力弹塑性分析[J].水利学报,2012,43(12):1478-1486.
[5] 周 扬,余钧陶.土工格栅加筋对高土石坝坝坡地震稳定性影响研究[J].水电能源科学,2014,32(2): 72-75.
[6] 孔宪京,邹德高,邓学晶,等.高土石坝综合抗震措施及其效果的验算[J].水利学报,2006,37(12):1489-1495.
[7] 刘文白,周 健. 土工格栅与土界面作用特性试验研究[J]. 岩土力学,2009,30(4): 965-970.
[8] 胡 军. 高土石坝动力稳定分析及加固措施研究[D].大连:大连理工大学,2008.
[9] 郑志勇,余海兵,徐海清.软硬岩互层边坡的破坏模式及稳定性研究[J].长江科学院院报,2016,33(9):102-106.
[10]谢定义.土动力学[M].北京:高等教育出版社,2011.
[11]FAN G, ZHANG L M, ZHANG J J, et al. Time-Frequency Analysis of Instantaneous Seismic Safety of Bedding Rock Slopes[J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 92-101.
[12]房智恒,王李管,彭南良,等. 高陡边坡整体与局部失稳的强度折减及安全度判别分析[J]. 重庆大学学报,2015,38(6): 8-14.
[13]朱亚林,马 驰,李端洲,等. 地震作用下高土石坝的弹塑性分析[J].合肥工业大学学报(自然科学版),2016,39(11):1520-1524.
[14]孔宪京,邹德高,徐 斌,等.大渡河双江口水电站300级高心墙堆石坝科研可研阶段报告[R].大连:大连理工大学,2008.
[15]大连理工大学.双江口计算报告[R]. 大连:大连理工大学,2008.