长江科学院院报 ›› 2024, Vol. 41 ›› Issue (5): 87-94.DOI: 10.11988/ckyyb.20221571

• 水力学 • 上一篇    下一篇

船舶对明渠水流运动的影响模型试验研究

曹向楠, 姚仕明, 丁兵, 范达福   

  1. 长江科学院 河流研究所,武汉 430010
  • 收稿日期:2022-11-21 修回日期:2023-04-26 出版日期:2024-05-01 发布日期:2024-05-07
  • 通讯作者: 姚仕明(1974-),男,安徽庐江人,正高级工程师,博士,主要从事河湖保护与治理研究。E-mail:yzhshmq@163.com
  • 作者简介:曹向楠(1997-),男,湖北宜都人,硕士,研究方向为防灾减灾工程及防护工程。E-mail:1044117389@qq.com
  • 基金资助:
    国家自然科学基金长江水科学研究联合基金项目(U2240224); 中央级公益性科研院所基本科研业务费专项(CKSF2021530/HL);流域水治理重大科技问题研究项目(CKSC2020791/HL)

Model Experiment on the Influence of Ships on the Flow Motion in Open Channel

CAO Xiang-nan, YAO Shi-ming, DING Bing, FAN Da-fu   

  1. River Department, Changjiang River Scientific Research Institute, Wuhan 430010,China
  • Received:2022-11-21 Revised:2023-04-26 Online:2024-05-01 Published:2024-05-07

摘要: 为了探求船舶对于明渠水流运动的影响,利用水位测针和粒子图像测速(Particle Image Velocimetry,PIV)系统分别测量了明渠水流中不同吃水工况下船舶前、后的沿程水深及流场,分析了位于船舶中间纵剖面上的流速分布特征。结果表明:①相较于无船工况,船前水深略有增加,船后水深略有减少;且船舶对水深的影响程度随着吃水深度的增加而增加,有船与无船水深的比值最大为1.071,最小为0.951;②船舶中间纵剖面上纵向垂线流速分布从船头前“J”型向船舶底部的“⊃”型转变,流经船尾后逐渐恢复为“J”型,且在船头附近形成下潜水流、船尾附近形成上升水流;③在船舶吃水深度为0.6h时,纵向(沿水流方向)与垂向(沿水深方向)上都出现各个工况下的最大流速,纵向流速最大值达到无船时平均纵向流速的2.11倍,位于船头附近(x/l=-2/5);下潜水流流速最大值达到无船时平均纵向流速的71%,位于船头附近(x/l=-0.5);上升水流流速最大值达到无船时平均纵向流速的29%,位于船尾附近(x/l=2/3)。

关键词: 船舶, 粒子图像测速(PIV), 水深, 流速分布, 明渠水流

Abstract: To investigate the impact of ships on open channel flow, we employed point gauges and Particle Image Velocimetry (PIV) systems to measure water depth and flow fields both upstream and downstream of ships under varying draft conditions. We then analyzed velocity distribution characteristics along the longitudinal profile at the midship region. Our findings reveal the following: 1) In comparison to ship-free conditions, the water depth slightly increases upstream of the ship while decreasing slightly downstream. The influence of ships on water depth amplifies with deeper drafts. The maximum and minimum ratios of water depth in the presence of ship to that in the absence of ship are 1.071 and 0.951, respectively. 2) Along the longitudinal vertical axis of the ship, velocity distribution transforms from a “J” shape at the bow, dips near the stern, and returns to a “J” shape. Upstream of the bow and downstream of the stern, rising and diving flow patterns are observed, respectively. 3) At a ship draft of 0.6 h, maximum velocities occur both longitudinally (along the current direction) and vertically (along the water depth direction) under various conditions. The maximum longitudinal velocity, reaching 2.11 times the average longitudinal velocity in the absence of ship, is observed near the bow (x/l=-2/5). The maximum velocity of diving flow is 0.71 times the average longitudinal velocity in the absence of ship, located near the bow (x/l=-0.5). The maximum velocity of rising flow is 0.29 times the average longitudinal velocity in the absence of ship, positioned near the stern (x/l=2/3).

Key words: ships, particle image velocimetry(PIV), depth of water, velocity distribution, open channel flow

中图分类号: