长江中游城陵矶—武汉河段稳定航深计算方法改进

单敏尔, 刘鑫, 李瀛, 张伟, 陈怡君, 雷雪婷

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (6) : 91-97.

PDF(5874 KB)
PDF(5874 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (6) : 91-97. DOI: 10.11988/ckyyb.20230106
水力学

长江中游城陵矶—武汉河段稳定航深计算方法改进

  • 单敏尔1, 刘鑫2, 李瀛1, 张伟1, 陈怡君1, 雷雪婷1
作者信息 +

Improvement of the Calculation Method for Stable Navigation Depth of Chenglingji-Wuhan Section in the Middle Reach of Yangtze River

  • SHAN Min-er1, LIU Xin2 , LI Ying1, ZHANG Wei1, CHEN Yi-jun1 , LEI Xue-ting1
Author information +
文章历史 +

摘要

航道稳定航深计算是充分利用航道水深资源的前提条件,改进稳定航深的计算过程对估算航道水深潜力有重要的意义。为计算长江中游城陵矶—武汉河段航道最大稳定水深,改进了稳定航深估算法中的河相关系参数、水深修正系数及分流比计算过程,同时综合考虑分汊河段和非分汊河段的稳定航深,最后确定了城陵矶—武汉河段在不同流量、不同河宽下的稳定航深。研究结果表明:①通过构建城陵矶—武汉河段流量Q与河相系数α、形状系数k、河相指数β、河宽B的经验关系,可简化改进稳定航深估算法的稳定航深计算过程。②城陵矶—武汉河段在98%设计通航保证率流量下,150、200、250 m航宽尺度下基于自然禀赋的稳定航深分别为5.98、5.64、5.30 m;在20 000 m3/s流量下,150、200、250 m航宽尺度下的稳定航深分别为12.56、11.89、11.22 m;在30 000 m3/s流量下,150、200、250 m航宽尺度下的稳定航深分别为16.81、16.16、15.49 m。

Abstract

Estimating the maximum stable navigation depth of waterway is a prerequisite for optimizing the utilization of water depth resource. Enhancing the process of calculation holds significant importance in evaluating waterway depth potential. To ascertain the maximum stable waterway depth of Chenglingji-Wuhan section of the middle reach of Yangtze River, we refined the processes of calculating river phase relationship parameter, waterway depth correction coefficient, and split ratio in the estimation method. In consideration of both branching and non-branching river sections, we determined the maximum stable waterway depth of Chenglingji-Wuhan section under various flow rates and river widths. Key findings include: 1) The process of calculating stable waterway depth can be simplified and improved by establishing the empirical relations of flow rate Q against river phase coefficient α, shape coefficient k, river phase index β, and river width B. 2) At a design navigation guarantee rate of 98%, the stable waterway depths of Chenglingji-Wuhan section based on natural endowments are 5.98, 5.64, and 5.30 meters for navigation widths of 150, 200, and 250 meters, respectively. At a flow rate of 20 000 m3/s, the stable waterway depths with the same navigation widths are 12.56, 11.89, and 11.22 meters, while for a flow rate of 30 000 m3/s, these values are 16.81, 16.16, and 15.49 meters.

关键词

稳定航深 / 改进计算 / 河相关系 / 水深修正系数 / 分汊河段 / 长江中游

Key words

stable navigation depth / improved calculations / river phase relationship / water depth correction coefficient / branching river section / middle reach of Yangtze River

引用本文

导出引用
单敏尔, 刘鑫, 李瀛, 张伟, 陈怡君, 雷雪婷. 长江中游城陵矶—武汉河段稳定航深计算方法改进[J]. 长江科学院院报. 2024, 41(6): 91-97 https://doi.org/10.11988/ckyyb.20230106
SHAN Min-er, LIU Xin, LI Ying, ZHANG Wei, CHEN Yi-jun, LEI Xue-ting. Improvement of the Calculation Method for Stable Navigation Depth of Chenglingji-Wuhan Section in the Middle Reach of Yangtze River[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(6): 91-97 https://doi.org/10.11988/ckyyb.20230106
中图分类号: TV131   

参考文献

[1] 姚记卓,夏军强,邓珊珊,等.三峡工程蓄水后长江中游城陵矶-汉口河段过流能力变化及影响因素分析[J].湖泊科学,2021,33(3):830-841.(YAO Ji-zhuo, XIA Jun-qiang, DENG Shan-shan, et al. Variation in Flood-discharge Capacity of Chenglingji-Hankou Reach in the Middle Yangtze River and Analysis of Influencing Factors since the Onset of the Three Gorges Reservoir[J]. Journal of Lake Sciences, 2021, 33(3): 830-841.(in Chinese))
[2] 程 稳,钱红露,尹维清,等.多目标协同下长江航道承载力研究:Ⅰ.理论[J].应用基础与工程科学学报,2022,30(5):1061-1070.(CHENG Wen, QIAN Hong-lu, YIN Wei-qing, et al. Research on Waterway Carrying Capacity of the Yangtze River under Multi-objective Cooperation: Ⅰ.Theory[J]. Journal of Basic Science and Engineering, 2022, 30(5): 1061-1070.(in Chinese))
[3] 赵艺为, 张培林. 长江航道承载力概念研究[J]. 水运工程, 2018(3): 124-128, 165. (ZHAO Yi-wei, ZHANG Pei-lin. Conception of the Yangtze River Waterway Carrying Capacity[J]. Port & Waterway Engineering, 2018(3): 124-128, 165.(in Chinese))
[4] 李文杰,王 皓,龙 浩,等.长江叙渝段航道最大开发尺度研究[J].水利水运工程学报,2021(2):20-26.(LI Wen-jie, WANG Hao, LONG Hao, et al. Study on the Maximum Waterway Dimension of the Yibin-Chongqing Reach in the Upper Yangtze River[J]. Hydro-Science and Engineering, 2021(2): 20-26.(in Chinese))
[5] 冯宏琳. 西江航道尺度开发潜能研究[D]. 南京: 河海大学, 2006. (FENG Hong-lin. Study on Exploitable Potential of Waterway Dimension in the Xijiang River[D].Nanjing: Hohai University, 2006. (in Chinese))
[6] 姜继红, 冯宏琳, 张 玮, 等. 西江(桂梧段)优良河段及其河相关系分析研究[J]. 水运工程, 2006(2): 70-73. (JIANG Ji-hong, FENG Hong-lin, ZHANG Wei, et al. Fine Reach and Hydraulic Geometry in Xijiang River from Guiping to Wuzhou[J]. Port & Waterway Engineering, 2006(2): 70-73.(in Chinese))
[7] 朱代臣, 解中柱, 吕晓兵. 长江干线泸州至重庆河段航道开发潜能初探[J]. 人民长江, 2011, 42(19): 7-10. (ZHU Dai-chen, XIE Zhong-zhu, LYU Xiao-bing. Study on Channel Development Potential of Luzhou-Chongqing Reach of Yangtze River[J]. Yangtze River, 2011, 42(19): 7-10.(in Chinese))
[8] 交通运输部天津水运工程科学研究所.岷江下游(龙溪口枢纽至合江门)设计最小通航流量研究[R].天津:交通运输部天津水运工程科学研究所,2017. (Tianjin Research Institute for Water Transport Engineering,M.O.T. Study on the Design Minimum Navigable Flow in the Lower Reaches of the Minjiang River (from Longxikou Junction to Hejiangmen[R].Tianjin: Tianjin Research Institute for Water Transport Engineering,M.O.T, 2017. (in Chinese))
[9] 张有林,吕 彪,李 欢.岷江下游龙溪口枢纽至合江门河段航道开发尺度估算研究[J].中国水运(下半月),2015,15(12):256-258,250.(ZHANG You-lin, LYU Biao, LI Huan. Study on the Estimation of Waterway Development Scale from Xikou Junction in Lower Youlong to Hejiangmen Reach of Minjiang River[J]. China Water Transport, 2015, 15(12): 256-258, 250.(in Chinese))
[10] 何海胜, 杨志明, 蒋昌波, 等. 东江航道潜能分析与开发研究: Ⅱ.东江中游优良河段河相关系分析[J]. 中国水运(下半月), 2016, 16(1): 51-54.(HE Hai-sheng, YANG Zhi-ming, JIANG Chang-bo, et al. Potential Analysis and Development Research of Dongjiang Waterway: Ⅱ. Analysis of Hydraulic geometry in the Middle Reaches of Dongjiang[J]. China Water Transport, 2016, 16(1): 51-54.(in Chinese))
[11] 李 鑫,周正洋,左利钦,等.长江下游湖口—南京分汊河段最大稳定航深研究[J].水运工程,2022(11):116-121.(LI Xin, ZHOU Zheng-yang, ZUO Li-qin, et al. Maximum Stable Channel Depth of Braided Hukou-Nanjing Reach of Lower Yangtze River[J]. Port & Waterway Engineering, 2022(11): 116-121.(in Chinese))
[12] 熊厚庭, 胡世雄. 基于一维数学模型不同流量下沿程河相关系研究[J]. 人民珠江, 2015, 36(6): 1-4. (XIONG Hou-ting, HU Shi-xiong.River Phase Coefficient under Different Flow Rates Based on One-dimensional Mathematical Model[J]. Pearl River, 2015, 36(6): 1-4.(in Chinese))
[13] 龙 浩. 长江上游航道尺度提升潜力模拟及评价研究[D]. 重庆: 重庆交通大学, 2020. (LONG Hao. Study on the Improvement Potential and Passing Capacity Evaluation of the Channels in the Upper Reaches of the Yangtze River[D].Chongqing: Chongqing Jiaotong University, 2020. (in Chinese))
[14] 孙启航,夏军强,周美蓉,等.三峡工程运用后城陵矶—武汉河段河床调整及崩岸特点[J].湖泊科学,2019,31(5):1447-1458.(SUN Qi-hang, XIA Jun-qiang, ZHOU Mei-rong, et al. Characteristics of Channel Adjustments and Bank Erosion in the Chenghan Reach after the Three Gorges Project Operation[J]. Journal of Lake Sciences, 2019, 31(5): 1447-1458.(in Chinese))
[15] 韩剑桥, 孙昭华, 李义天, 等. 三峡水库蓄水后宜昌至城陵矶河段枯水位变化及成因[J]. 武汉大学学报(工学版), 2011, 44(6): 685-690, 695. (HAN Jian-qiao, SUN Zhao-hua, LI Yi-tian, et al. Changes and Causes of Lower Water Level in Yichang-Chenglingji Reach after Impounding of Three Gorges Reservoir[J]. Engineering Journal of Wuhan University, 2011, 44(6): 685-690, 695.(in Chinese))
[16] 李咏梅, 孙治国, 贾方方. 长江城汉河段深泓线演变对水沙异变的响应研究[J]. 人民长江, 2022, 53(8): 9-14. (LI Yong-mei, SUN Zhi-guo, JIA Fang-fang. Responses of Thalweg Evolution to Water-Sediment Variation in Chenglingji-Hankou Reach of Changjiang River[J]. Yangtze River, 2022, 53(8): 9-14.(in Chinese))
[17] 张 为, 吴美琴, 李思璇, 等. 三峡水库蓄水后城陵矶至九江段河道冲淤调整机理[J]. 水科学进展, 2020, 31(2): 162-171. (ZHANG Wei, WU Mei-qin, LI Si-xuan, et al. Mechanism of Adjustment of Scouring and Silting of Chenglingji—Jiujiang Reach in the Middle Reaches of the Yangtze River after Impoundment of the Three Gorges Dam[J]. Advances in Water Science, 2020, 31(2): 162-171.(in Chinese))
[18] 长江航道规划设计研究院.长江中游城陵矶至武汉河段航道维护尺度潜力研究[R].武汉:长江航道规划设计研究院,2020. (Changjiang Waterway Institute of Planing and Design. Water Depth Potential under Waterway Maintenance of Chenglingji-Wuhan reach in the Middle Reach of Yangtze River[R]. Wuhan: Changjiang Waterway Institute of Planing and Design, 2020. (in Chinese))
[19] 钱红露,程 稳,尹维清,等.多目标协同下长江航道承载力研究:Ⅱ.应用[J].应用基础与工程科学学报,2022,30(6):1366-1376.(QIAN Hong-lu, CHENG Wen, YIN Wei-qing, et al. Research on Waterway Carrying Capacity of the Yangtze River under Multi-objective Cooperation: Ⅱ.Application[J]. Journal of Basic Science and Engineering, 2022, 30(6): 1366-1376.(in Chinese))

基金

长江航道局科研项目(2022230001);长江航道规划设计研究院自主立项科研项目(2022-L-02)

PDF(5874 KB)

Accesses

Citation

Detail

段落导航
相关文章

/