高寒小流域措普沟山洪风险分析

陈华勇, 蒋良文, 游勇, 王科, 张广泽, 王涛

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (10) : 171-176.

PDF(4725 KB)
PDF(4725 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (10) : 171-176. DOI: 10.11988/ckyyb.2019152376
川藏铁路横断山区山地灾害分析专栏

高寒小流域措普沟山洪风险分析

  • 陈华勇1,2,3, 蒋良文4, 游勇1,3, 王科4, 张广泽4, 王涛1
作者信息 +

Risk Analysis of Flash Flood in Cuopu Gully in High and Cold Mountain Area

  • CHEN Hua-yong1,2,3, JIANG Liang-wen4, YOU Yong1,3, WANG Ke4, ZHANG Guang-ze4, WANG Tao1
Author information +
文章历史 +

摘要

已有山洪泥石流灾害的风险评估主要针对暴雨或者冰川融水激发条件下的风险评估,而当高寒山区流域源头存在冰湖发育时,如何考虑冰湖对下游铁路、公路等线性工程影响的研究并不多见。以巴塘县措普沟及其支沟上游绒伊措冰湖为例,在分析冰湖孕灾环境背景的基础上,通过遥感解译和详细的野外调查,获得了绒伊措冰湖几何参数与沟道断面特征参数;结合坝体结构与物质组成特征,分析了坝体结构的稳定性;依据措普流域水文计算成果,评估了山洪对拟建铁路的影响。研究表明:绒伊措冰湖坝体由坚硬的花岗岩组成,坝体完整性好,在不考虑高烈度地震等极端条件下,绒伊措冰湖坝体稳定性较好,发生溃决的可能性较小,绒伊措冰湖对下游拟建铁路的影响小;在考虑P=1%设计频率暴雨与冰川融水情景下,措普流域山洪洪峰流量为448 m3/s,桥位所处断面的平均流速2.75 m/s,水深4.62 m,与铁路梁底的高差为53.89 m,对铁路线路安全不构成威胁。

Abstract

Existing risk assessment of flood/debris flow disasters is based mainly on the analysis of heavy rainfall or glacier-melt water.In some areas,especially in high and cold mountainous areas with glacial lake developing,researches on the impact of glacial lakes on proposed railways, highways and other linear projects downstream are rarely reported. In this paper, the key geometric parameters of Rongyi glacier lake in the upstream catchment of Cuopu Gully and the characteristic parameters of channel section are obtained based on the analysis of the environmental conditions of the glacial lake via remote sensing interpretation and detailed field surveys. The structure and material composition of lake dam are analyzed, and the stability of the dam structure is analyzed. Moreover, according to hydrological calculation of Cuopu Gully catchment, the impact of flash flood on proposed railway project is evaluated. Results reveal that the dam of Rongyi glacier lake is composed of hard granite with good integrity, indicating small possibility of dam failure in the absence of extreme conditions such as highly intensive earthquake. In the scenario of P=1% design frequency rainfall in association with glacier-melt water, the peak flow of mountain flood in Cuopu gully catchment is 448 m3/s, the average flow velocity at the railway bridge section is about 2.75 m/s,and the water depth is about 4.62 m. According to the railway design, the elevation difference between the bottom of railway beam and the flow surface is 53.89 m,which is considered to be safe for the proposed railway.

关键词

绒伊措冰湖 / 坝体稳定性 / 洪水灾害 / 风险分析 / 流速 / 水深

Key words

Rongyi glacial lake / dam stability / flood hazards / risk analysis / flow velocity / flow depth

引用本文

导出引用
陈华勇, 蒋良文, 游勇, 王科, 张广泽, 王涛. 高寒小流域措普沟山洪风险分析[J]. 长江科学院院报. 2020, 37(10): 171-176 https://doi.org/10.11988/ckyyb.2019152376
CHEN Hua-yong, JIANG Liang-wen, YOU Yong, WANG Ke, ZHANG Guang-ze, WANG Tao. Risk Analysis of Flash Flood in Cuopu Gully in High and Cold Mountain Area[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(10): 171-176 https://doi.org/10.11988/ckyyb.2019152376
中图分类号: TV14   

参考文献

[1] GARDELLE J, BERTHIER E, ARNAUD Y, et al. Region-wide Glacier Mass Balances over the Pamir-Karakoram-Himalaya during 1999-2011[J].2013,7(4):1263-1286.
[2] IPCC. Climate Change 2013:the Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013:1-261.
[3] 姚檀栋,刘时银,蒲健辰,等.高亚洲冰川的近期退缩及其对西北水资源的影响[J].中国科学(D辑:地球科学),2004,34(6): 535-543.
[4] 冯 童,刘时银,许君利,等. 1968—2009年叶尔羌河流域冰川变化:基于第一、二次中国冰川编目数据[J].冰川冻土,2015,37(1):1-13.
[5] YAO T, THOMPSON L, YANG W, et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings[J]. Nature Climate Change, 2012, 2(9):663-667.
[6] SHRESTHA B B, NAKAGAWA H. Assessment of Potential Outburst Floods from the Tsho Rolpa Glacial Lake in Nepal[J]. Natural Hazards, 2014, 71(1):913-936.
[7] 刘 林,常福宣,肖长伟,等.溃坝洪水研究进展[J]. 长江科学院院报, 2016, 33(6):29-35.
[8] CHEN X,CUI P,LI Y,et al. Changes in Glacial Lakes and Glaciers of Post-1986 in the Poiqu River Basin, Nyalam, Xizang (Tibet)[J]. Geomorphology, 2007,88(3): 298-311.
[9] 刘 林. 不同溃决模式下冰湖溃决洪水演进模拟及危险区划[D].武汉:长江科学院,2016.
[10]吕儒仁,唐邦兴, 朱平一. 西藏泥石流与环境[M]. 成都:成都科技大学出版社, 1999.
[11]陈晓清,崔 鹏,杨 忠,等. 聂拉木县冲堆普2002年泥石流成因分析及防治对策[J].冰川冻土,2006, 28(5):776-781.
[12]四川省地质矿产勘查开发局. 义郭幅H-47-16 1/20万区域地质测量报告[R]. 成都:四川省地质矿产勘查开发局,1980.
[13]刘佳丽, 周天财,于 欢,等. 西藏近25 a湖泊变迁及其驱动力分析[J]. 长江科学院院报,2017, 35(2):145-150.
[14]水利部水文局,南京水利科学研究院. 中国暴雨统计参数图集[M]. 北京:中国水利水电出版社, 2006.
[15]吴持恭. 水力学[M]. 3版.北京:高等教育出版社,2003.

基金

中国铁路总公司科技研究开发计划课题(2017G008-F);中国科学院重点部署项目(KFZD-SW-425);四川省重点研发项目(2019YFG0460);中国科学院山地所‘一三五’方向性项目(SDS-135-1701);中国科学院创新促进会项目(2017425)

PDF(4725 KB)

Accesses

Citation

Detail

段落导航
相关文章

/