长江科学院院报 ›› 2016, Vol. 33 ›› Issue (1): 43-47.DOI: 10.11988/ckyyb.20140690

• 工程安全与灾害防治 • 上一篇    下一篇

基于小波分解和支持向量机的大坝位移监控模型

姜振翔,徐镇凯,魏博文   

  1. 南昌大学 建筑工程学院,南昌 330031
  • 收稿日期:2014-08-09 出版日期:2016-01-20 发布日期:2016-01-20
  • 通讯作者: 魏博文(1981-),男,江西彭泽人,讲师,博士,从事水工结构数值分析及安全监控研究,(电话)13767428612(电子信箱)bwweincu@126.com。
  • 作者简介:姜振翔(1989-),男,江西南昌人,硕士研究生,从事水工结构安全监控及风险分析,(电话)15071264157(电子信箱)jiangzhenxiang89@163.com。
  • 基金资助:
    国家自然科学基金项目(51569014,51409139)

A Monitoring Model of Dam Displacement Based onWavelet Decomposition and Support Vector Machine

JIANG Zhen-xiang, XU Zhen-kai, WEI Bo-wen   

  1. College of Civil Engineering and Architecture,Nanchang University,Nanchang 330031,China
  • Received:2014-08-09 Published:2016-01-20 Online:2016-01-20

摘要: 常规大坝安全监控统计模型未能分别针对监测序列值内系统信号和随机信号特点进行模拟,故预报精度存在一定的提升空间。基于小波分解技术,利用监测序列值信号频率特征分离出系统信号与随机信号,并结合逐步回归与支持向量机(SVM)对不同信号的处理优势,在引入网格寻优与交叉验证确定SVM敏感参数的基础上,提出了一种基于多元统计结合小波分解和支持向量机的大坝位移监控模型,同时编制了其相应的计算程序。工程算例表明,该模型较常规模型能够同时考虑监测序列中的系统信号和随机信号,并且具有较强的模型寻优能力和更高的预报精度,从而验证了所建模型的有效性,该方法亦可推广应用于高边坡及大坝其他预警指标的监控。

关键词: 大坝位移, 小波分解, 参数寻优, 支持向量机, 监控模型

Abstract: The systematic signal and random signal in the monitoring sequence are difficult to distinguish in the conventional monitoring models of the dam, thus the forecasting accuracy of the conventional model can be promoted. In this paper, we separate the systematic signal from random signal by their frequency features based on wavelet decomposition. According to the advantages of managing signals of stepwise regression and Support Vector Machine(SVM), in association with grid search and cross validation methods for determining the sensitive parameters of SVM, we present a monitoring model of dam displacement based on multivariate statistical combined with wavelet decomposition and support vector machine. Then the calculating procedures are compiled. The engineering examples indicate that both the systematic signal and random signal can be separated effectively in the composite model, with high forecasting accuracy and good optimization ability. Finally, the composite model is effective and the method can be applied to high slope monitoring and other warning indicators of dam projects.

Key words: dam displacement, wavelet decomposition, parameter optimization, support vector machine, monitoring model

中图分类号: