长江科学院院报 ›› 2014, Vol. 31 ›› Issue (6): 69-72.DOI: 10.3969/j.issn.1001-5485.2014.06.0142014, 31(06):69-72

• 岩土工程 • 上一篇    下一篇

岩体抗剪强度参数神经网络反分析方法改进

姜照容, 王乐华   

  1. 三峡大学 三峡库区地质灾害教育部重点实验室, 湖北 宜昌 443002
  • 收稿日期:2013-04-18 修回日期:2014-06-06 出版日期:2014-06-01 发布日期:2014-06-06
  • 通讯作者: 王乐华(1977-), 男, 安徽怀宁人, 副教授, 主要从事卸荷岩体力学特性研究, (电话)13986811749(电子信箱)lehuatg@126.com。
  • 作者简介:姜照容(1987-), 女, 湖北黄冈人, 硕士研究生, 主要从事开挖卸荷岩体的力学特性研究, 15871617835, jiangzryu@163.com。
  • 基金资助:
    三峡大学2012年研究生科研创新基金项目(2012CX018)

Improving Neural Network Back Analysis Method forShear Strength Parameters of Rock Mass

JIANG Zhao-rong, WANG Le-hua   

  1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area under Ministry of Education, China Three Gorges University, Yichang 443002, China
  • Received:2013-04-18 Revised:2014-06-06 Online:2014-06-01 Published:2014-06-06

摘要: 采用神经网络反演岩体抗剪强度参数, 当把安全系数作为网络输入时, 由于网络输入参数个数小于输出个数, 神经网络无法建立输入与输出之间的映射关系, 导致反演结果误差偏大。针对这一问题, 提出一种用于岩体抗剪强度参数神经网络反分析的新方法首先利用神经网络反分析确定反演抗剪强度参数的范围, 然后利用神经网络正分析在上述范围内进行仿真, 预测其对应的安全系数, 最后用最优化方法, 把安全系数的预测值与反演值差值的绝对值作为目标函数, 找出与反演工况下安全系数差值最小的安全系数相对应的黏聚力与内摩擦角组合, 认为该组合即为最终反演的岩体抗剪强度参数。工程实例表明, 由该方法得到的岩体抗剪强度参数计算出的安全系数与反演工况下安全系数相等, 说明该方法能有效解决上述问题, 是可行的。

关键词: 神经网络, 抗剪强度参数, 安全系数, 反分析, 最优化

Abstract: Neural network has been used to inverse the shear strength parameters of rock mass. When safety factor is used as network input, the number of input parameters less than the number of output parameters will result in big errors as the mapping between input and output could not be established. In view of this, a new method of neural network back analysis suitable for the shear strength parameters of rock mass is presented. Firstly, neural network back analysis is employed to determine the range of inversion parameter, and then normal analysis is used for simulation in the above range to predict the safety factor. Finally, by using method of optimization, the absolute difference value between predicted and inversed values of safety factor is taken as objective function to find out the combination of cohesion and internal friction angle in correspondence with the safety factor which has minimum difference with the safety factor in the inversion conditions. This combination is thus regarded as the final inversed shear strength parameters of rock mass. Engineering examples show that the safety factor obtained by the method is equal to the safety factor in inversion conditions, indicating that this method is effective and feasible to solve the above problems.

Key words: neural network, shear strength parameters, safety factor, back analysis, optimization

中图分类号: