基于智能机器人的水下建筑物裂缝检测方法与应用

刘巍, 葛海彬, 徐妍彦, 赵洪光, 金京善, 季昊巍

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (4) : 164-169, 190.

PDF(1870 KB)
PDF(1870 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (4) : 164-169, 190. DOI: 10.11988/ckyyb.20221383
水利信息化

基于智能机器人的水下建筑物裂缝检测方法与应用

  • 刘巍1, 葛海彬1, 徐妍彦2, 赵洪光1, 金京善1, 季昊巍3
作者信息 +

A Crack Detection Method Based on Intelligent Robot and Its Application to Underwater Building

  • LIU Wei1, GE Hai-bin1, XU Yan-yan2, ZHAO Hong-guang1, JIN Jing-shan1, JI Hao-wei3
Author information +
文章历史 +

摘要

针对水下建筑物裂缝检测问题,研发了一款新型智能水下机器人,此机器人具备恒温控制、低耗能驱动功能,可以在超低温深水环境下进行自主采集数据、导航与定位。基于机器人采集得到的图像数据,在图像预处理、深度卷积网络理论和裂缝特征数据标注的基础上,改进了原始的CNN模型,提出了特征金字塔融合卷积神经网络模型FPECNN,对不同类型的裂缝进行了提取。将FPECNN网络应用于莲花水电站大坝的裂缝检测工程中,计算结果表明FPECNN在检测率、召回率和F值上都处于较高的水平,达到了97.26%、98.04%和96.65%,耗时为3.12 s;FPECNN网络普适性与鲁棒性更佳,能够适应大多数的裂缝数据,生存能力更好,有利于解决常规CNN模型在水下建筑物检测中检测率低、效率低的问题。该智能机器人可将检测人员从高寒水下恶劣、繁重和危险的现场作业中解脱出来,同时解决水电站传统检测中因弃水造成的巨大经济损失问题,并能提高检测效率和精度。

Abstract

An intelligent underwater robot was developed for crack detection of underwater buildings. The robot has constant temperature control and low energy consumption drive, and has functions of data collection, navigation, and positioning independently in ultra-low temperature deepwater environment. Based on the image data collected by the robot, the original CNN (Convolutional Neural Network) model was improved on the basis of image preprocessing, deep convolution network theory and fracture feature data annotation. Hence, an FPECNN (Feature Pyramid Engagement Convolution Neural Network) model was proposed to extract different types of cracks. The FPECNN model was applied to the crack detection project of Lianhua Hydropower Station. The calculation results demonstrate that the FPECNN model stands at a high level in detection rate, recall rate and F value, reaching 97.26, 98.04 and 96.65, respectively, consuming only 3.12 s. It is also well universal, robust, and viable as it adapts to most crack data, and refrains from low detection rate and low efficiency of conventional CNN model in the detection of underwater buildings. With this intelligent robot, the inspection personnel can be relived from the harsh, heavy and dangerous field work in cold underwater, and the huge economic loss caused by the abandonment of water in traditional inspections can be avoided, and improve the detection efficiency and accuracy.

关键词

智能机器人 / 裂缝检测 / 水下建筑物 / 特征金字塔融合卷积神经网络 / 检测率

Key words

intelligent robot / crack detection / underwater structures / feature pyramid engagement convolutional neural network / detection rate

引用本文

导出引用
刘巍, 葛海彬, 徐妍彦, 赵洪光, 金京善, 季昊巍. 基于智能机器人的水下建筑物裂缝检测方法与应用[J]. 长江科学院院报. 2023, 40(4): 164-169, 190 https://doi.org/10.11988/ckyyb.20221383
LIU Wei, GE Hai-bin, XU Yan-yan, ZHAO Hong-guang, JIN Jing-shan, JI Hao-wei. A Crack Detection Method Based on Intelligent Robot and Its Application to Underwater Building[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(4): 164-169, 190 https://doi.org/10.11988/ckyyb.20221383
中图分类号: TH12    TV652   

参考文献

[1] 夏坚,周利君,张 伟.基于迁移学习与VGG16深度神经网络的建筑物裂缝检测方法.福建建设科技,2022(1):19-22,60.
[2] 贺欢.基于粘结滑移的衬砌裂缝宽度计算模型研究.长江科学院院报,2022,39(7):149-153.
[3] 史晓东,刘洋.基于特征显著性的地震灾害发生后建筑物裂缝智能检测模型.灾害学,2020,35(4):38-42.
[4] 吕兴栋,李家正.面板堆石坝混凝土面板裂缝现状、成因与防裂技术进展.长江科学院院报,2021,38(11):127-134,141.
[5] 李孟军,郭运冲.基于无人机的建筑物裂缝图像采集与处理系统.科学技术创新,2020(25):92-93.
[6] 许星光.浅谈建筑物裂缝检测与分析判断中应注意的几个问题.广西城镇建设,2003(4):32-34.
[7] 邵 磊,余 挺,迟世春.堆石微裂缝扩展规律及其影响因素.长江科学院院报,2016,33(1):115-120.
[8] 徐刚. 水下机器人在福建水电工程水下建筑物质量检测中的应用. 水利水电快报, 2019, 40(11):4.
[9] 李晓磊.水下电视在水下建筑物故障检测中的应用.水利规划与设计,2014(2):68-69,102.
[10] 李文鹏,李连喜,张增涛.大坝砼面板裂缝处理应用与研究.长江科学院院报,2010,27(9):70-73,82.
[11] 张仕山,孙振海,汪小钦,等.集成DS证据理论和模糊集的建筑物检测方法.遥感信息,2020,35(5):93-105.
[12] 王瑜,赵其华.某电站坝区左岸深部裂缝特征及成因机理浅析.长江科学院院报,2010,27(4):49-52.
[13] 董彪,熊风光,韩 燮,等.基于改进Yolo v3算法的遥感建筑物检测研究.计算机工程与应用,2020,56(18):209-213.
[14] 刘波, 刘露. 一种基于高分辨率SAR图像的城市地区建筑物检测方法. 军民两用技术与产品, 2019(10):47.
[15] 饶锦蒙. 移动增强现实中的建筑物智能检测与注册方法.武汉:武汉大学,2019.

基金

北京工业大学教育部重点实验室基金项目(2022B06)

PDF(1870 KB)

Accesses

Citation

Detail

段落导航
相关文章

/