为研究动荷载对临近桥梁微型桩深基坑开挖稳定性的影响,以中国“一带一路”重点贡献项目格鲁吉亚E60高速公路Ubisa-Shorapani(F3)标段工程为主要依托,通过数值模拟分析列车荷载对基坑土体、支护结构内力及变形影响,并将数值计算结果与现场监测数据对比分析。结果表明:相对于无列车荷载,考虑列车荷载作用下近侧桩体最大位移和土体最大沉降分别增大14.5%、20%,基坑整体安全系数减小0.1,在开挖过程中应充分考虑列车荷载对基坑稳定性的影响。不同列车荷载施加方式下,首道支撑所受影响显著,各道支撑轴力变化幅度随开挖从上到下逐渐减小。列车荷载距离基坑边界5 m时近列车侧土体最大沉降比20 m条件下增大3.61 mm,且当距离为20 m时土体沉降几乎不受列车荷载影响,基坑稳定性较好。动荷载时速为120 km/h、距离为5 m情况下桩体内力受荷载影响较大,弯矩及最大弯矩位置深度随荷载距离减小逐渐增大,最大弯矩相比无列车荷载时增大210 kN·m。
Abstract
To investigate the impact of dynamic loading on the stability of adjacent bridges with micro-pile deep foundation pits, this study focuses primarily on the Ubisa-Shorapani (F3) section of Georgia E60 Expressway, which is a significant project contributing to China’s “Belt and Road” initiative. Numerical simulation is employed to analyze the effects of train loads on the foundation pit soil as well as the internal forces and deformation of the supporting structure. The results obtained from the numerical calculations are then compared with the data collected from on-site monitoring. The findings reveal that under the influence of train loads, the maximum displacement of pile near the train side and the maximum settlement of the soil increase by approximately 14.5% and 20%, respectively. Moreover, the overall safety factor of the foundation pit decreases by 0.1. Therefore, it is crucial to fully consider the impact of train loads on the stability of the foundation pit during the excavation process. The initial support is particularly affected by different loading modes, and the range of change in axial force for each support gradually decreases as the excavation progresses from top to bottom. When the train load is positioned 5 m away from the boundary of the foundation pit, the settlement of the soil near the train side is 3.61 mm greater compared to a load distance of 20 m. At a load distance of 20 m, soil settlement experiences minimal influence from the train load, resulting in improved stability of the foundation pit. The dynamic load exerted by the train greatly affects the internal forces of the neighboring pile. The magnitude of bending moment and the depth at which the maximum bending moment occurs increase gradually as the load distance decreases. Specifically, when the dynamic load speed is set at 120 km/h and the distance is 5 m, the pile experiences significant load-induced effects. The bending moment increases by 210 kN·m, and the depth at which the maximum bending moment occurs rises compared to the scenario without train load.
关键词
深基坑 /
微型桩 /
数值模拟 /
动荷载 /
水平位移 /
土体沉降 /
支撑轴力 /
桩体弯矩 /
安全系数
Key words
deep foundation /
micro-pile /
nemerical simulation /
dynamic load /
horizontal displacement /
surface subsidence /
axial force of support /
bending moment of pile shaft /
safety factor
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵胜波, 王兴平, 胡雪峰. “一带一路”沿线中国国际合作园区发展研究: 现状、影响与趋势[J]. 城市规划, 2018, 42(9): 9-20, 38.
[2] 许旭堂, 简文彬, 吴能森, 等. 动荷载作用下山区道路边坡耐久性研究[J]. 长江科学院院报, 2019, 36(1): 102-106.
[3] DEGRANDE G,SCHEVENELS M,CHATTERJEE P,et al. Vibrations Due to a Test Train at Variable Speeds in a Deep Bored Tunnel Embedded in London Clay[J].Journal of Sound and Vibration,2006,293(3/4/5):626-644.
[4] BRANCHERIAU L,BAILLERES H.Natural Vibration Analysis of Clear Wooden Beams: a Theoretical Review[J]. Wood Science and Technology,2002,36(4):347-365.
[5] 刘 波, 章定文, 席培胜. 偏压基坑工程设计、施工与受力变形特性研究进展[J]. 中国矿业大学学报, 2018, 47(4): 791-804.
[6] 边学成, 陈云敏. 列车荷载作用下轨道和地基的动响应分析[J]. 力学学报, 2005, 37(4): 477-484.
[7] 颜 涛. 移动荷载作用下基坑支护结构响应分析[D]. 武汉: 武汉理工大学, 2011.
[8] 张学民, 石钰锋, 张自力, 等. 列车动载作用下偏压基坑围护结构的动力响应分析[J]. 振动与冲击, 2012, 31(20): 103-109.
[9] 和振兴, 翟婉明, 杨吉忠, 等. 铁路交通地面振动的列车-轨道-地基耦合数值方法研究[J]. 振动工程学报, 2008, 21(5): 488-492.
[10] 毕湘利, 周顺华. 列车振动荷载对邻近深基坑的既有站变形影响[J]. 同济大学学报(自然科学版), 2004, 32(12): 1599-1602.
[11] 赵桐德, 李二超, 闫继业, 等. 动荷载作用下基坑支护结构动力响应研究[J]. 地震工程与工程振动, 2020, 40(3): 216-222.
[12] 石钰锋. 紧邻铁路地铁车站基坑围护结构稳定性研究[D]. 长沙: 中南大学, 2010.
[13] 朱庆华, 张 峰, 邵 勇, 等. 移动列车作用下大直径顶管群和路基的动力变形和应力[J]. 长江科学院院报, 2020, 37(11): 96-101.
[14] 梁 波, 蔡 英. 不平顺条件下高速铁路路基的动力分析[J]. 铁道学报, 1999, 21(2): 84-88.
[15] 梁 波, 罗 红, 孙常新. 高速铁路振动荷载的模拟研究[J]. 铁道学报, 2006, 28(4): 89-94.
[16] DIN EN 13230-2, Railway Applications-Track-Concrete Sleepers and Bearers - Part 2: Prestressed Monoblock Sleepers[S]. Berlin: DIN, 2016.
[17] JSJ 120—2012,建筑基坑支护技术规程[S]. 北京:中国建筑工业出版社,2012.
[18] 李立云, 王晓琼, 张盛夏, 等. 列车引起的环境振动及对邻近深基坑影响试验分析[J]. 铁道建筑, 2013, 53(6): 81-84.
[19] 师雯琦, 杨双锁, 牛少卿, 等. 不同列车荷载简化方式对临近基坑扰动效应的对比分析、[J]. 矿业研究与开发, 2022, 42(2): 76-81.
[20] 王成华, 崔晓峰. 土体强度折减法存在的问题及其讨论[J]. 工业建筑, 2017, 47(1): 89-95.
[21] TB 10001—2005,铁路路基设计规范[S]. 北京: 中国铁道出版社, 2005.
基金
国家自然科学基金项目(U1604135);中交集团第二公路工程局重点科研项目(2020-2-15);河南省科技厅产学研合作项目(2015HNCXY011)