基于人工神经网络的梯形闸门流量计算模型

孟万尚, 赵帅杰, 李琳

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (9) : 86-92.

PDF(1137 KB)
PDF(1137 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (9) : 86-92. DOI: 10.11988/ckyyb.20230491
水力学

基于人工神经网络的梯形闸门流量计算模型

作者信息 +

Flow Calculation Model for Trapezoidal Gate Based on Artificial Neural Network

Author information +
文章历史 +

摘要

对新型平板闸门——梯形闸门自由出流和淹没出流的过闸流量进行计算。基于反向传播(BP)神经网络和径向基函数(RBF)神经网络建立了多变量、多组合单输出的流量计算模型,模型输入变量为边坡系数、闸门开度、闸前总水头、水力半径、闸后收缩水深、下游渠道水深,输出变量为实测流量,利用试验实测数据集对模型进行训练和检验,充分验证后发现2种人工神经网络模型的预测效果良好。人工神经网络模型在梯形闸门自由出流和淹没出流的流量计算上适应性好、预测精度高,对灌区各级渠系上设置的梯形闸门过闸流量可以进行精确预测,实现精准控流。

Abstract

This study introduces an approach for calculating the free flow and submerged flow through flat-trapezoidal gate. The flow calculation model was established based on BP (Back Propagation) neural network and RBF (Radial Basis Function) neural network, with multiple variables and combinations as well as single output. The input variables for the model included slope coefficient, gate opening, total head in front of the gate, hydraulic radius, contraction depth behind the gate, and downstream channel water depth. The output variable was measured flow rate. The model was trained and tested using experimental data, and extensive validation confirmed that both BP and RBF artificial neural network models demonstrated strong predictive performance. These models exhibited excellent adaptability and high accuracy in predicting flow rates for trapezoidal gates in canal systems in irrigation areas, thereby enabling precise flow control.

关键词

梯形闸门 / 自由出流 / 淹没出流 / BP神经网络 / RBF神经网络 / 流量预测

Key words

trapezoidal gate / free discharge / submerged discharge / BP neural network / RBF neural network / flow prediction

引用本文

导出引用
孟万尚, 赵帅杰, 李琳. 基于人工神经网络的梯形闸门流量计算模型[J]. 长江科学院院报. 2024, 41(9): 86-92 https://doi.org/10.11988/ckyyb.20230491
MENG Wan-shang, ZHAO Shuai-jie, LI Lin. Flow Calculation Model for Trapezoidal Gate Based on Artificial Neural Network[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 86-92 https://doi.org/10.11988/ckyyb.20230491
中图分类号: TV131 (水力理论、计算、实验)   

参考文献

[1]
张鲁国, 李琳. 一种梯形闸门:中国,202020053138.9[P]. 2020-09-25.
(ZHANG Lu-guo, LI Lin. A Trapezoidal Gate: China, 202020053138.9[P]. 2020-09-25. (in Chinese))
[2]
李琳, 赵帅杰. 垂直梯形闸门自由出流水力特性试验研究[J]. 水利学报, 2023, 54(6): 677-685, 695.
(LI Lin, ZHAO Shuai-jie. Study on the Hydraulics of Vertical Trapezoidal Sluice Gate under Free Flow Conditions[J]. Shuili Xuebao, 2023, 54(6): 677-685, 695. (in Chinese))
[3]
闻新. MATLAB神经网络应用设计[M]. 北京: 科学出版社, 2000.
(WEN Xin. Application Design of MATLAB Neural Network[M]. Beijing: Science Press, 2000. (in Chinese))
[4]
张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69.
(ZHANG Chi, GUO Yuan, LI Ming. Review of Development and Application of Artificial Neural Network Models[J]. Computer Engineering and Applications, 2021, 57(11): 57-69. (in Chinese))
[5]
徐学良. 人工神经网络的发展及现状[J]. 微电子学, 2017, 47(2): 239-242.
(XU Xue-liang. The Development and Status of Artificial Neural Network[J]. Microelectronics, 2017, 47(2): 239-242. (in Chinese))
[6]
焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1717.
(JIAO Li-cheng, YANG Shu-yuan, LIU Fang, et al. Seventy Years beyond Neural Networks: Retrospect and Prospect[J]. Chinese Journal of Computers, 2016, 39(8): 1697-1717. (in Chinese))
[7]
李超, 尤林贤, 胡书庭. BP神经网络在太浦闸水位流量关系中的应用[J]. 水利水电工程设计, 2021, 40(4): 33-36.
(LI Chao, YOU Lin-xian, HU Shu-ting. Application of BP Neural Network in the Relationship between Water Level and Discharge of Taipu Sluice[J]. Design of Water Resources & Hydroelectric Engineering, 2021, 40(4): 33-36. (in Chinese))
[8]
纪国良, 周曼, 刘涛, 等. 基于循环神经网络的水库水位预测方法[J]. 长江科学院院报, 2022, 39(3): 80-85.
(JI Guo-liang, ZHOU Man, LIU Tao, et al. Predicting Water Level for Large Reservoirs Using Recurrent Neural Network[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(3): 80-85.
[9]
赵力学, 黄解军, 程学军, 等. 基于VMD-BP模型的河流流量预测方法[J]. 长江科学院院报, 2020, 37(7): 47-52.
(ZHAO Li-xue, HUANG Jie-jun, CHENG Xue-jun, et al. A Method of River Flow Prediction Based on VMD-BP Model[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(7): 47-52.
[10]
RADY R A E H. Modeling of Flow Characteristics beneath Vertical and Inclined Sluice Gates Using Artificial Neural Networks[J]. Ain Shams Engineering Journal, 2016, 7(2): 917-924.
[11]
GHOLAMI V, KHALEGHI M R. A Comparative Study of the Performance of Artificial Neural Network and Multivariate Regression in Simulating Springs Discharge in the Caspian Southern Watersheds, Iran[J]. Applied Water Science, 2018, 9(1): 9.
[12]
NOROUZI R, DANESHFARAZ R, GHADERI A. Investigation of Discharge Coefficient of Trapezoidal Labyrinth Weirs Using Artificial Neural Networks and Support Vector Machines[J]. Applied Water Science, 2019, 9(7): 148.
[13]
秦晨光. 平板节制闸自由出流计算方法研究[D]. 郑州: 郑州大学, 2020.
(QIN Chen-guang. Study on Calculation Method of Free Outflow of Flat Sluice[D]. Zhengzhou: Zhengzhou University, 2020. (in Chinese))
[14]
徐苏, 窦明, 米庆彬, 等. 五种过闸流量计算方法在槐店闸的适用性及改进的杜屿公式精度分析[J]. 水电能源科学, 2016, 34(3): 36-39, 10.
(XU Su, DOU Ming, MI Qing-bin, et al. Applicability of Five Kinds of Methods for Calculating Water Discharge through Huaidian Sluice Gate and Analysis of Modified Duyu Formula Precision[J]. Water Resources and Power, 2016, 34(3): 36-39, 10. (in Chinese))
[15]
秦晨光, 毛豪林, 王继华, 等. 闸孔自由出流流量系数公式的改进与应用: 以槐店闸为例[J]. 中国农村水利水电, 2019(7): 129-133.
(QIN Chen-guang, MAO Hao-lin, WANG Ji-hua, et al. The Application and Improvement of the Free-flow Discharge Coefficient Formulas at the Huaidian Sluice[J]. China Rural Water and Hydropower, 2019(7): 129-133. (in Chinese))
[16]
DOU M, QIN C, LI G, et al. Research on Calculation Method of Free Flow Discharge Based on Artificial Neural Network and Regression Analysis[J]. Flow Measurement and Instrumentation, 2020, 72: 101707.

基金

新疆维吾尔自治区自然科学基金项目(2022D01A182)

编辑: 王慰
PDF(1137 KB)

Accesses

Citation

Detail

段落导航
相关文章

/