基于全景展开图像的隧道围岩节理识别方法

方星桦, 阳军生, 黄定著, 詹双桥, 张聪

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (5) : 116-123.

PDF(6679 KB)
PDF(6679 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (5) : 116-123. DOI: 10.11988/ckyyb.20221563
岩土工程

基于全景展开图像的隧道围岩节理识别方法

  • 方星桦1,2, 阳军生1, 黄定著3, 詹双桥4, 张聪2
作者信息 +

A Recognition Method for Surrounding Rock Joints of Tunnel Based on Panoramic Developed Images

  • FANG Xing-hua1,2, YANG Jun-sheng1, HUANG Ding-zhu3, ZHAN Shuang-qiao4, ZHANG Cong2
Author information +
文章历史 +

摘要

为了解决目前节理信息识别方法仅适用于局部岩体图像的问题,采用全景展开图像方法,将采集到的局部洞壁围岩图像进行特征点提取、点云模型重建、矫正拼接处理,获得高分辨率的隧道洞壁围岩全景展开图像。通过图像预处理、小尺寸特征图片的smaAt-Unet神经网络识别、小尺寸图片识别结果的融合拼接,对洞壁围岩全景展开图像的节理信息进行了区域粗略分割识别。采用Zhang-Suen算法和8邻域连通域分析方法,从骨架化与骨架线分离、毛刺剔除、骨架线连接方面进行了算法分析计算,完成了节理信息的细化提取。对体积节理数和节理空间产状信息进行了量化分析,最终建立了一种基于全景展开图像的隧道洞壁围岩节理信息识别方法。工程应用结果表明,洞壁围岩全景展开图像识别后,节理面空间方程的平均拟合误差为0.90,说明该识别方法能够较好地识别全景展开图像中的节理信息。另外,洞壁围岩图像采集具有时间短、易操作、灵活性较高的优点,对现场施工影响较小,该识别方法能够较为快速地完成节理信息识别,给现场施工与动态设计提供参考。

Abstract

Current methods of joint information recognition are only applicable to local rock images. To address this limitation, we employed the panoramic developed imaging technique to extract image features, reconstruct point-cloud model, and correct and stitch the collected local rock images, thereby obtaining high-resolution panoramic image of the tunnel’s surrounding rock mass. Through image pre-processing and recognition of small-size feature images by SmAt-Unet neural network, followed by fusion of the recognition results, we roughly recognized the joint occurrences in the panoramic image region. Subsequently, we extract the refined joint information via skeletonization, skeleton line separation, burr removal, and skeleton line connection using the Zhang-Suen algorithm and the 8-neighborhood connected domain analysis method. Ultimately, through quantified analysis of volumetric joint number and joint occurrence information, we developed the method to identify rock joint information based on panoramic developed images. Application results demonstrate an average fitting error of 0.90 of the spatial equation of jointed plane, indicating successful joint information identification. Moreover, the panoramic developed imaging technique boasts advantages such as rapidity, simplicity, and flexibility, with minimal impact on site construction.

关键词

隧道 / 洞壁围岩 / 全景展开图像 / smaAt-Unet神经网络 / 节理识别

Key words

tunnel / surrounding rock / panoramic developed image / SmaAt-Unet neural network / joint recognition

引用本文

导出引用
方星桦, 阳军生, 黄定著, 詹双桥, 张聪. 基于全景展开图像的隧道围岩节理识别方法[J]. 长江科学院院报. 2024, 41(5): 116-123 https://doi.org/10.11988/ckyyb.20221563
FANG Xing-hua, YANG Jun-sheng, HUANG Ding-zhu, ZHAN Shuang-qiao, ZHANG Cong. A Recognition Method for Surrounding Rock Joints of Tunnel Based on Panoramic Developed Images[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(5): 116-123 https://doi.org/10.11988/ckyyb.20221563
中图分类号: U45   

参考文献

[1] HANEBERG W C. Using Close Range Terrestrial Digital Photogrammetry for 3-D Rock Slope Modeling and Discontinuity Mapping in the United States[J]. Bulletin of Engineering Geology and the Environment, 2008, 67(4): 457-469.
[2] LI X,CHEN Z,CHEN J,et al.Automatic Characterization of Rock Mass Discontinuities Using 3D Point Clouds[J]. Engineering Geology, 2019, 259: 105131.
[3] 王培涛, 覃 拓, 黄正均, 等. 基于三维点云的岩体结构面信息快速化识别方法研究[J]. 岩石力学与工程学报, 2021, 40(3): 503-519. (WANG Pei-tao, QIN Tuo, HUANG Zheng-jun, et al. Fast Identification of Geometric Properties of Rock Discontinuities Based on 3D Point Cloud[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 503-519.(in Chinese))
[4] JIANG R, JUREGUI D V, WHITE K R. Close-range Photogrammetry Applications in Bridge Measurement: Literature Review[J]. Measurement, 2008, 41(8): 823-834.
[5] ZHANG P, DU K, TANNANT D D, et al. Automated Method for Extracting and Analysing the Rock Discontinuities from Point Clouds Based on Digital Surface Model of Rock Mass[J]. Engineering Geology, 2018, 239: 109-118.
[6] 喻春平,郭 强,廖正彪,等.岩石表面图像的特征提取和处理方法[J].上海交通大学学报,2013,47(9):1482-1486.(YU Chun-ping,GUO Qiang,LIAO Zheng-biao,et al. Feature Extraction and Corresponding Processing of Rock Surface Image[J]. Journal of Shanghai Jiao Tong University,2013,47(9):1482-1486.(in Chinese))
[7] VASUKI Y,HOLDEN E J,KOVESI P,et al. An Interactive Image Segmentation Method for Lithological Boundary Detection[J]. Computers & Geosciences,2017,100(C): 27-40.
[8] LIU C, REN C. Research on Coal-rock Fracture Image Edge Detection Based on Tikhonov Regularization and Fractional Order Differential Operator[J]. Journal of Electrical and Computer Engineering, 2019, doi:10.1155/2019/9594301.
[9] 柳厚祥,李汪石,查焕奕,等.基于深度学习技术的公路隧道围岩分级方法[J].岩土工程学报,2018,40(10):1809-1817.(LIU Hou-xiang, LI Wang-shi, ZHA Huan-yi, et al. Method for Surrounding Rock Mass Classification of Highway Tunnels Based on Deep Learning Technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1809-1817.(in Chinese))
[10]谢 壮, 陈宝林, 傅金阳, 等. 基于机器视觉三维重建技术的隧道掌子面岩体结构数字识别方法及应用[J]. 铁道科学与工程学报, 2019, 16(4): 1001-1007. (XIE Zhuang, CHEN Bao-lin, FU Jin-yang, et al. Digital Identification and Application of Rock Mass Structure on Tunnel Excavation Face Based on Computer Vision 3D Reconstruction[J]. Journal of Railway Science and Engineering, 2019, 16(4): 1001-1007.(in Chinese))
[11]WU X, WANG F, WANG M, et al. A New Method for Automatic Extraction and Analysis of Discontinuities Based on TIN on Rock Mass Surfaces[J]. Remote Sensing, 2021, 13(15): 2894.
[12]郭甲腾, 张紫瑞, 毛亚纯, 等. 基于三维点云的岩体结构面自动分类与参数计算[J]. 东北大学学报(自然科学版), 2020, 41(8): 1161-1166. (GUO Jia-teng, ZHANG Zi-rui, MAO Ya-chun, et al. Automatic Calculation from Rock Mass 3D Point Cloud[J]. Journal of Northeastern University (Natural Science), 2020, 41(8): 1161-1166.(in Chinese))
[13]GE Y, CAO B, TANG H. Rock Discontinuities Identification from 3D Point Clouds Using Artificial Neural Network[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1705-1720.
[14]YANG S, LI H, MA L, et al. An Automatic Method for Discontinuity Recognition in Coal-measure Strata Borehole Images[J]. IEEE Access, 2021, 9: 105072-105081.
[15]ZHU Z H,FU J Y,YANG J S,et al.Panoramic Image Stitching for Arbitrarily Shaped Tunnel Lining Inspection[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31(12): 936-953.
[16]RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[17]TREBING K, STACZYK T, MEHRKANOON S. smaAt-Unet: Precipitation Nowcasting Using a Small Attention-UNet Architecture[J]. Pattern Recognition Letters, 2021, 145(C): 178-186.
[18]FENG Y, DIAO W, SUN X, et al. Npaloss: Neighboring Pixel Affinity Loss for Semantic Segmentation in high-resolution Aerial Imagery[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020,2:475-482.
[19]ZHANG T Y, SUEN C Y. A Fast Parallel Algorithm for Thinning Digital Patterns[J]. Communications of the ACM, 1984, 27(3): 236-239.
[20]胡修文, 胡盛明, 卢 阳, 等. 岩体体积节理数的统计方法及其在围岩分级中的应用[J]. 长江科学院院报, 2010, 27(6): 30-34. (HU Xiu-wen, HU Sheng-ming, LU Yang, et al. Measurement of Volumetric Joint Count and Its Application in Surrounding Rock Classification[J]. Journal of Changjiang River Scientific Research Institute, 2010, 27(6): 30-34. (in Chinese))
[21]GB/T 50218—2014, 工程岩体分级标准[S]. 北京: 中国计划出版社, 2015. (GB/T 50218—2014, Standard for Engineering Classification of Rock Mass[S]. Beijing: China Planning Press, 2015. (in Chinese))
[22]林 锋,黄润秋,王 胜,等.岩体体积节理数(Jv)的现场测量方法评价[J].工程地质学报,2008,16(5):663-666.(LIN Feng,HUANG Run-qiu,WANG Sheng,et al. Evaluation of in situ Measurement Methods for Counting Volumetric Joints of Rock Mass[J]. Journal of Engineering Geology, 2008, 16(5): 663-666.(in Chinese))

基金

国家自然科学基金高铁联合基金项目(U1934211);中南大学研究生自主探索创新项目(2021zzts0241);犬木塘水库工程科技创新项目 (W-2022-72)

PDF(6679 KB)

Accesses

Citation

Detail

段落导航
相关文章

/