长江科学院院报 ›› 2023, Vol. 40 ›› Issue (11): 93-101.DOI: 10.11988/ckyyb.20220649

• 岩土工程 • 上一篇    下一篇

卡拉水电站地下洞室群稳定性分析及洞室间距优化研究

方丹1, 韩钢2,3, 鄢江平4, 邵兵1, 张传庆3,5, 周辉3,5, 高阳3,5   

  1. 1.中国电建集团 华东勘测设计研究院有限公司,杭州 310014;
    2.长江科学院 水利部岩土力学与工程重点实验室, 武汉 430010;
    3.中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071;
    4.雅砻江流域水电开发有限公司,成都 610051;
    5.中国科学院大学,北京 100049
  • 收稿日期:2022-06-10 修回日期:2022-09-14 出版日期:2023-11-01 发布日期:2023-11-09
  • 通讯作者: 韩钢(1991-),男,山东青岛人,工程师,博士,主要从事地下工程稳定性、数值计算方法方面的研究工作。E-mail: 2450904009@qq.com
  • 作者简介:方丹(1980-),男,安徽歙县人,正高级工程师,硕士,主要从事水电站设计及岩石力学与工程方面研究工作。E-mail: fang_d2@hdec.com
  • 基金资助:
    国家自然科学基金-雅砻江联合基金重点项目(U1865203);中国科学院科技服务网络计划(STS计划)项目(KFJ-STS-QYZD-174);国家自然科学基金项目(41941018)

Stability Analysis of Underground Caverns and Optimization of Cavern Spacing of Kala Hydropower Station

FANG Dan1, HAN Gang2,3, YAN Jiang-ping4, SHAO Bing1, ZHANG Chuan-qing3,5, ZHOU Hui3,5, GAO Yang3,5   

  1. 1. Power China Huadong Engineering Corporation Limited, Hangzhou 310014, China;
    2. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, China;
    3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;
    4. Yalong River Hydropower Development Co., Ltd., Chengdu 610051, China;
    5. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-06-10 Revised:2022-09-14 Online:2023-11-01 Published:2023-11-09

摘要: 不利地质构造及软弱地层是卡拉水电站地下洞室群围岩稳定控制的关键性因素,鉴于此,采用离散元方法建立了包含不同级别结构面及软弱地层的节理岩体模型。在节理岩体模型的基础上,对处于优化设计阶段的卡拉水电站进行洞室群稳定性分析以及主副厂房洞和主变洞间距优化研究。数值计算结果表明:地下厂房洞室群整体稳定性较好,地下厂房区围岩具备成洞条件;但存在软弱地层T3z2-5区域围岩变形较大,局部区域节理相互切割易造成块体滑落等工程地质问题,需要对其重点关注;结合洞群开挖后围岩内场量的分布情况以及经济指标和力学指标,从定性和定量角度对洞室间距进行了优选,最终确定主副厂房洞和主变洞间距50 m为最优方案。相关研究成果对于卡拉水电站洞室优化、安全施工具有一定指导意义。

关键词: 地下洞室群, 围岩稳定性, 结构面, 3DEC, 洞室间距优化, 卡拉水电站

Abstract: Unfavorable geological structures and weak strata play a decisive role in regulating the stability of surrounding rock in underground caverns at the Kala hydropower station. In light of this, a 3D fine jointed rock mass model with different levels of discontinuities and weak strata is constructed by using the discrete element method. Utilizing this jointed rock mass model, the stability of the underground caverns and optimal spacing between the main powerhouses and the main transformer room are analyzed. The numerical findings indicate favorable overall stability of the underground caverns, affirming their feasibility for construction. However, some engineering geologic concerns emerge, including significant deformation of the surrounding rock mass in the T3z2-5 weak stratum zone and block sliding triggered by joint cutting. Addressing these issues necessitates tailored support treatments. The spacing between the main powerhouses and the main transformer room is optimized via a qualitative and quantitative assessment accounting for variations in the surrounding rock field following cavern excavation as well as economic and mechanical indicators. The optimum spacing between the main and auxiliary powerhouses and the main transformer room is determined as 50 meters. Comprehensive analysis enables the identification of an optimized spacing that enhances economic efficiency and operational performance. The research findings carry substantial implications for both the optimization of cavern design and the safe construction of Kala hydropower station.

Key words: underground caverns, stability of surrounding rock, discontinuities, 3DEC, optimization of cavern spacing, Kala hydropower station

中图分类号: