投影寻踪是一种解决复杂围岩稳定性评价问题较为有效的不确定性分析方法,但其结果受投影方向的影响和控制。为寻求最优的投影方向向量和体现寻优过程的不确定性,探讨了寻求最佳投影方向向量的反向学习果蝇优化算法,进而利用该算法改进围岩稳定性投影寻踪评价模型。针对投影寻踪方法常出现分级阈值难以划分情形,利用实测样本的最佳投影值,通过逆向云算法构建了不同等级围岩的正态云模型,进而有效解决了阈值难以划分问题。为判定模型评价结果可靠度和评价过程模糊性,引入模糊熵E作为辅助参评量和等级评价结果L共同构成二维评价模式(L, E)。围岩稳定性评价指标多种多样且评价体系不唯一,选取2个采用不同评价指标体系的实例予以应用,并与其他方法作对比分析。结果表明,该模型应用于围岩稳定性评价有效可行,且评价结果客观准确,为围岩稳定性分级提供了新参考。
Abstract
Projection pursuit is an efficient uncertainty analysis method in solving complex stability problems for surrounding rock. Its result is affected and controlled by the projection direction. To find an optimum projection direction vector and reflect the uncertainty of the process, we adopted an opposition-based learning fruit fly optimization algorithm (OBLFOA) to modify the projection pursuit evaluation model for surrounding rock stability. The classification threshold of projection pursuit is difficult to be divided in some special cases. In view of this, we constructed the normal cloud models for different grades of surrounding rock by using the optimal projection value according to the optimum projection value of measured samples. To determine the reliability of the model evaluation results and the fuzziness of the evaluation process, we introduced the fuzzy entropy E as the auxiliary parameter with the evaluation result L forming a two-dimensional evaluation mode (L, E). Since the evaluation indexes of surrounding rock stability are varied and the evaluation system is not unique, we selected two cases with different evaluation index systems for application and compared with other methods. Results indicated that the proposed model is feasibile and effective and the evaluation results are objective and accurate.
关键词
围岩稳定性 /
反向学习果蝇算法(OBLFOA) /
投影寻踪 /
逆向云 /
模糊熵
Key words
surrounding rock stability /
opposition-based learning fruit fly optimization algorithm /
projection pursuit /
backward cloud model /
fuzzy entropy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈守煜, 韩小军. 围岩稳定性评价的模糊可变集合工程方法[J]. 岩石力学与工程学报, 2006, 29(9): 1857-1861.
[2] 张继宝, 汪明武, 谢慧敏. 基于粗糙集理论的围岩稳定性模糊综合评价[J]. 安徽建筑工业学院学报(自然科学版), 2008, 16(2): 85-88.
[3] 连建发, 慎乃齐, 张杰坤. 基于可拓方法的地下工程围岩评价研究[J]. 岩石力学与工程学报, 2004, 23(9): 1450-1453.
[4] 高志亮, 黄松奇. 公路隧道围岩稳定性评价的改进人工神经网络方法[J]. 数学的实践与认知, 2002, 32(2): 241-246.
[5] 吴大国, 汪明武, 张薇薇. 基于集对分析的围岩稳定性评价[J]. 西部探矿工程, 2008, 20(2): 6-7.
[6] 李 健, 汪明武, 徐 鹏, 等. 基于云模型的围岩稳定性分类[J]. 岩土工程学报, 2014, 36(1): 83-87.
[7] 汪明武, 金菊良, 等. 联系数理论与应用[M]. 北京: 科学出版社, 2017: 80-81.
[8] FRIEDMAN J H, TURKEY J W. AProjection Pursuit Algorithm for Exploratory Data Analysis[J]. IEEE Trans on Computer, 1974, 23(9): 881-890.
[9] 付 强, 金菊良, 梁 川. 基于实码加速遗传算法的投影寻踪分类模型在水稻灌溉制度优化中的应用[J]. 水利学报, 2002, 33(10): 39-45.
[10] PAN W T. A New Fruit Fly Optimization Algorithm: Taking the Financial Distress Model as an Example[J]. Knowledge-based Systems, 2012, 26(1): 69-74.
[11] 吴小文, 李 擎. 果蝇算法和5种群智能算法的寻优性能研究[J]. 火力与指挥控制, 2013, 38(4): 17-20.
[12] 刘立群, 韩俊英, 代永强, 等. 果蝇优化算法优化性能对比研究[J]. 计算机技术与发展, 2015, 25(8): 94-98.
[13] 俞祥荣, 张社荣, 王雪红, 等. 基于果蝇-BP神经网络算法的大坝力学参数反演[J]. 水利水电技术, 2014, 45(9): 52-54.
[14] 谢国民, 单敏柱, 付 华. 基于FOA-SVM的煤矿瓦斯爆炸风险模式识别[J]. 控制工程, 2018, 25(10): 1859-1864.
[15] TIZHOOSH H R. Opposition-based Learning: A New Scheme for Machine Intelligence[C] //Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on IEEE. Vienna: IEEE Press, 2005: 695-701.
[16] WANG Hui, WU Zhi-jian, RAHNAMAYAN S, et al. Enhancing Particle Swarm Optimization Using Generalized Opposition-based Learning[J]. Information Sciences, 2011, 181(20): 4699-4714.
[17] 徐 飞, 徐卫亚, 温 森, 等. 基于PSO-PP的围岩稳定性评价[J]. 岩土力学, 2010, 31(11): 3651-3655.
[18] 吴枋胤, 何 川,汪 波, 等. 基于洞壁实测信息的FA-PP岩爆预测模型应用研究[J]. 中国公路学报, 2020, 33(11): 215-225.
[19] 陈 昊, 李 兵, 刘常昱. 一种无确定度的逆向云算法[J]. 小型微型计算机系统, 2015, 36(3): 544-549.
[20] DE LUCA A, TERMINI S. A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory Information and Control, 1972, 20(4): 301-312.
[21] 邓廷权, 王占江, 汪培培, 等. 二型模糊集的模糊熵研究[J]. 控制与决策, 2012, 27(3): 408-412.
[22] 张良良. 煤矿巷道围岩质量分类方法与应用[D]. 济南:山东科技大学,2018.
[23] 吕擎峰, 赵本海, 潘松杰, 等. 基于TSP和PCA-Bayes法的隧道围岩分级[J]. 地下空间与工程学报, 2020, 16(1): 80-86.
基金
国家重点研发计划项目(2017YFC1502405);国家自然科学基金项目(41172274)