天然结构面产状分组对于岩体工程有着至关重要的作用。鉴于传统的分组方法存在近直立或近水平产状的结构面分组不准的不足,提出了一种结构面动态聚类分组分析方法。该方法据结构面的倾角和倾向确定聚类中心,以结构面之间夹角大小为依据,经多次迭代计算得到分组结果。将该方法应用于白云鄂博东矿303条结构面分组,并与快速聚类分组法进行对比。结果表明:白云鄂博东矿303条结构面分组后得到了3组优势结构面,其结果与结构面产状等密度图十分吻合。动态聚类分析法不仅计算简便、易于操作,而且弥补了传统方法无法定量等缺点,使得结构面分组结果更加准确,具有较强的实际意义。
Abstract
The grouping of natural structural planes is critical in rock mass engineering. Traditional grouping methods are inaccurate in grouping structural planes with near-vertical or near-horizontal occurrence. In view of this, a dynamic clustering analysis method for structural planes is proposed. The clustering center is determined based on the dip angle and inclination of structural planes, and the grouping result is obtained by iterative calculation based on the angle between structural planes. The method was applied to group 303 structural planes in Bayan Obo East mine and compared with the fast clustering method. Three dominant groups of structural planes were identified after the grouping of 303 structural planes, which agree well with the isodensity map of structural plane occurrence. The dynamic clustering analysis method is not only simple and easy to calculate but also overcomes the limitations of traditional methods in quantification, making the grouping of structural planes more accurate and practically significant.
关键词
天然岩体 /
结构面 /
优势产状 /
动态聚类
Key words
natural rock mass /
structural plane /
dominant occurrence /
dynamic clustering
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张荣春, 衣雪峰, 李 浩, 等. 多源数据多语义岩体结构面提取方法[J]. 测绘通报, 2021(11): 76-80, 105.
[2] 姚文生.基于竞争性神经网络在岩质边坡参数随机结构面优势分组中的应用[J].矿产与地质,2021,35(4): 799-804.
[3] 王述红, 朱宝强, 王鹏宇. 模拟退火聚类算法在结构面产状分组中的应用[J]. 东北大学学报(自然科学版), 2020, 41(9): 1328-1333.
[4] 王述红, 任艺鹏, 陈俊智, 等. 一种改进鱼群聚类算法在结构面分组中的应用[J]. 东北大学学报(自然科学版), 2019, 40(3): 420-424.
[5] 许 扬, 张 文, 符 锐, 等. 基于混合聚类的岩体结构面优势分组方法[J]. 世界地质, 2020, 39(1): 113-120.
[6] 王俊智, 杜朋召, 牛兆轩. 基于K-means聚类方法和Ⅰ Index聚类有效性检验指标的岩体结构面自动分组及应用[J]. 长江科学院院报, 2018, 35(9): 109-113, 120.
[7] 伏 坤, 王 珣, 刘 勇, 等. 基于K近邻改进密度峰值聚类分析法的岩体结构面产状优势分组[J]. 水利水电技术, 2019, 50(11): 124-130.
[8] 徐倚晴, 郝朝阳, 权雪瑞. 基于一种改进K-means聚类方法的岩体结构面优势分组研究[J]. 世界有色金属, 2019(21): 288-289.
[9] 李运生,宋金龙,李 煜,等. 基于凝聚层次聚类的K均值结构面产状分组[J].人民长江,2018,49(6):44-49.
[10] SUN S Q, HUANG R Q, PEI X J, et al. Engineering Geological Classification of the Structural Planes for Hydroelectric Projects in Emeishan Basalts[J]. Journal of Mountain Science, 2016, 13(2): 330-341.
[11] BHARGAVI M S, GOWDA S D. A Novel Validity Index with Dynamic Cut-off for Determining True Clusters[M]. New York: Elsevier Science Inc.,2015.
[12] 王同兴, 郭骏杰, 王 强. 基于K均值动态聚类分析的土样识别[J]. 建筑科学, 2010, 26(7): 52-56, 71.
[13] FENG F, LI X, ROSTAMI J, et al. Modeling Hard Rock Failure Induced by Structural Planes around Deep Circular Tunnels[J]. Engineering Fracture Mechanics, 2019, 205: 152-174.
[14] 王俊杰, 冯 登, 柴贺军, 等. 基于赤平极射投影和K-均值聚类算法的优势结构面分析[J]. 岩土工程学报, 2018, 40(1): 74-81.
基金
辽宁省教育厅基础研究项目(LJ2020JCL002);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-25,LNTU20TD-31);国家自然科学基金项目(51604138)