如何合理地评价硬石膏采房群或采空区的稳定性对保证安全生产、处治现有采空区具有重大的意义。选取山东肥城某石膏矿为工程实例,通过室内试验获取硬石膏岩石的物理力学参数;结合现场调查和室内试验结果,采用广义Hoek-Brown强度准则和地质强度指标估算了硬石膏岩体强度;运用FLAC3D5.0建立数值仿真模型,评价了硬石膏采房群的整体稳定性。基于广义Hoek-Brown强度准则的单元安全系数法(ESFM),定量分析了硬石膏采房群的局部稳定性。结果表明:该硬石膏开采完形成的采房群围岩体塑性区大量贯通,房柱基本破坏;房柱围岩单元的单元安全系数介于0.9~1.1之间,处于欠稳定状态甚至不稳定状态;该硬石膏采房群整体稳定性和局部稳定性差。因此,应优化硬石膏的采矿方法或采取必要的支护以保证安全生产。研究结果为采房群稳定性分析提供了参考。
Abstract
Estimating the stability of anhydrite cavern group or goaf areas exactly is of great significance for guaranteeing the production safety of anhydrite mine and the treatment of goaf area. With an anhydrite mine located in Feicheng, Shandong Province as an engineering example, the stability of anhydrite rock was estimated based on generalized Hoek-Brown criterion. First of all, the physical and mechanical parameters of anhydrite was obtained through laboratory test. In association with field investigation and lab tests, the strength of anhydrite rock mass was calculated based on the generalized Hoek-Brown failure criterion and geological strength index (GSI). Subsequently, the global stability of anhydrite cavern group was assessed by the numerical model built in FLAC3D5.0, while the local stability of anhydrite cavern group was estimated as well using element safety factor method (ESFM). Results indicated that the plastic zone of rock mass connected largely, and the pillars between caverns mainly broke. The element safety factor of pillars was between 0.9 and 1.1, implying poor stability status or even instability status. The global and local stability of the studied anhydrite cavern group were extremely inferior. Hence, the mining method should be optimized,or necessary supporting measures should be adopted to guarantee the production safety.
关键词
硬石膏岩体 /
采房群 /
Hoek-Brown强度准则 /
围岩稳定性 /
单元安全系数法(ESFM)
Key words
anhydrite rock mass /
mining group /
Hoek-Brown failure criterion /
surrounding rock stability /
element safety factor method (ESFM)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张国权, 王 娜, 谢丽丽. 山东省石膏矿资源分布及利用现状. 地球, 2013(11):31.
[2] 王啟明, 徐必根, 唐绍辉, 等. 我国金属非金属矿山采空区现状与治理对策分析. 矿业研究与开发, 2009, 29(4):63-68.
[3] 蒋奉亮. 浅谈石膏矿采空区的危害与治理. 华东科技(学术版), 2016(3):432.
[4] 金 超. 枣庄某石膏矿老采空区塌陷分析. 建筑工程技术与设计, 2015(16):1747.
[5] 苑金生. 带血的石膏!:邢台石膏矿发生坍塌事故. 建材发展导向, 2005, 3(6):36-37.
[6] 彭洪峰, 肖 敏. 娄底市双峰县杏子铺镇虎塘村“7·25”特大型地面塌陷成因分析. 国土资源导刊, 2012(3):93-94.
[7] 李 亮. 平邑石膏矿坍塌事故救援成功后的几点思考. 探矿工程(岩土钻掘工程),2016,43(10):281-286.
[8] 闫长斌,徐国元.对Hoek-Brown公式的改进及其工程应用.岩石力学与工程学报,2005,24(22):4030-4035.
[9] 杨 泽,侯克鹏,李克钢,等.云锡大屯锡矿岩体力学参数的确定.岩土力学,2010,31(6):1923-1924.
[10] HOEK E, BROWN E T. Underground Excavations in Rocks . London: Institution of Mining and Metallurgy, 1980: 527.
[11] EBERHARDT E. The Hoek-Brown Failure Criterion. Rock Mechanics and Rock Engineering, 2012, 45(6): 981-988.
[12] ZHAO J. Applicability of Mohr-Coulomb and Hoek-Brown Strength Criteria to the Dynamic Strength of Brittle Rock. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1115-1121.
[13] HOEK E, WOOD D, SHAH S. A Modified Hoek-Brown Failure Criterion for Jointed Rock Masses//Proceedings of the ISRM Symposium, Eurock ’92. British Geotechnical Society. Chester, UK, September 14-17, 1992: 209-214.
[14] MERIFIELD R S, LYAMIN A V, SLOAN S W. Limit Analysis Solutions for the Bearing Capacity of Rock Masses Using the Generalized Hoek-Brown Criterion. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 920-937.
[15] SØRENSEN E S, CLAUSEN J, DAMKILDE L. Finite Element Implementation of the Hoek-Brown Material Model with General Strain Softening Behavior. International Journal of Rock Mechanics and Mining Sciences, 2015, 78:163-174.
[16] 荣 梦,常晓林,周 伟,等.基于霍克-布朗(Hoek-Brown)准则重力坝抗滑稳定分析. 武汉大学学报 (工学版), 2015, 48(4):471-482.
[17] 赵 坚, 李海波. 莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性. 岩石力学与工程学报, 2003, 22(2): 171-176.
[18] ZHANG L Y,ZHU H H. Three-dimensional Hoek-Brown Strength Criterion for Rocks . Journal of Geotechnical Geoenvironmental Engineering,2007,133(9):1128-1135.
[19] JIANG H,ZHAO J D. A Simple Three-dimensional Failure Criterion for Rocks Based on the Hoek-Brown Criterion. Rock Mechanics and Rock Engineering,2015,48:1807-1819.
[20] HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek-Brown Failure Criterion-2002 Edition. Toronto: University of Toronto Press, 2002: 267-273.
[21] HOEK E, BROWN E T. Practical Estimates of Rock Mass Strength. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8):1165-1186.
[22] 张良刚,吴 立,徐昌藏,等.基于模糊综合评判的Hoek-Brown强度准则修正及应用.岩土力学,2013,34(增刊2):89-93,99.
[23] HOEK E. Strength of Rock Masses. ISRM New Journal, 1994, 2(2): 1-4.
[24] HOEK E, KAISER P K, BAWDEN W F. Support of Underground Excavations in Hard Rock. Rotterdam: Balkema, 1995: 215.
[25] SONMEZ H, ULUSAY R. Modifications to the Geological Strength Index (GSI) and Their Applicability to Stability of Slopes. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6):743-760.
[26] ZHANG L G, WU L, XU C M, et al. Modification of Hoek-Brown Criterion and Its Application Based on Fuzzy Synthetic Evaluation. Indian Geotechnical Journal, 2015,45(1): 35-42.
[27] HOEK E,DIEDERICHS M S. Empirical Estimation of Rock Mass Modulus . International Journal of Rock Mechanics and Mining Sciences,2006,43(2):203-215.
[28] WANG H X, ZHANG B, FU D, et al. Stability and Airtightness of a Deep Anhydrite Cavern Group Used as an Underground Storage Space: A Case Study. Computers and Geotechnics, 2018,96:12-24.
基金
国家自然科学基金项目 (41572301, 61427802, 41972300) ; 中央高校基本科研业务经费项目(2-9-2015-071)