为研究不同石粉参数对混凝土力学性能的影响,应用正交试验法开展了石粉混凝土抗压强度和抗折强度试验,并通过SEM和MIP试验对石粉影响下混凝土的微观结构进行测试分析,最后基于BP神经网络对混凝土28 d抗压强度进行预测分析和变参数扩展分析。结果表明:石粉掺量对混凝土抗压强度和抗折强度影响最大,其次是石粉岩性,石粉细度影响最小。混凝土强度随石粉掺量的增加先增大后减小,掺量为10%时混凝土抗压强度较基准组提高了18.21%,抗折强度提高了17.91%;3种石粉混凝土强度的大小依次为凝灰岩粉>石灰石粉>红砂岩粉;随着石粉细度的增加强度逐渐增大。基于BP神经网络建立的石粉混凝土强度预测模型平均相对误差为2.33%,通过对试验结果的变参数扩展分析,得到预测值与试验结果的变化规律一致。
Abstract
The aim of the study is to investigate the influences of different stone powder parameters on the mechanical propertices of concrete. Compressive strength and flexural strength tests of stone powder concrete were carried out by orthogonal test method. The microstructure of concrete under the influence of stone powder was tested and analyzed by SEM and MIP test. Based on BP neural network, the 28 d compressive strength of concrete was predicted and further analyzed with variable parameters. Results show that the strength of concrete is most affected by the content of stone powder,less by the lithology,and least by the fineness. The strength of concrete first increases and then decreases with the increase of stone powder content.When the content of stone powder is 10%,the compressive strength of concrete increases by 18.21% and the flexural strength increases by 17.91% compared with the reference group.The strength of tuff powder concrete is larger than that of limestone powder concrete and red sandstone powder concrete in sequence.With the increase of the fineness of stone powder,the strength of concrete gradually increases.The average relative error of the model established based on the BP neural network is 2.33%.According to the extended analysis of variable parameters, the change rule of predicted values is consistent with experimental result.
关键词
混凝土 /
力学性能 /
石粉参数 /
正交试验法 /
SEM /
MIP试验 /
BP神经网络
Key words
concrete /
mechanical properties /
stone powder parameters /
orthogonal test method /
SEM /
MIP test /
BP neural network
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中国建筑材料联合会. 中国建筑材料工业碳排放报告(2020年度)[J].建筑,2021(8):21-23.
[2] 刘数华,阎培渝. 石粉作为碾压混凝土掺合料的利用和研究综述[J].水力发电,2007(1):69-71.
[3] 陈 慧,章家海,项炳泉,等. 石粉含量对机制砂混凝土性能影响的研究现状[J].安徽建筑,2020,27(8):151-152,162.
[4] 蔡基伟,李北星,周明凯,等. 石粉对机制砂混凝土性能的影响及机理研究[J]. 武汉理工大学学报, 2006, 28(4): 27-30.
[5] CAMPOS H F, KLEIN N S, FILHO J M, et al. Low-cement High-strength Concrete with Partial Replacement of Portland Cement with Stone Powder and Silica Fume Designed by Particle Packing Optimization[J]. Journal of Cleaner Production, 2020, 261: 121228.
[6] ZHU Y, WEN C, CHEN J. Influence of Stone Powder on Properties of Concrete with Low Cementitious Materials[C]//IOP Conference Series: Materials Science and Engineering. DOI:10.1088/1757-899X/371/1/012021.
[7] 张 岩,陈 云,胡志刚,等.人工砂中的石粉含量对抗冲磨混凝土性能的影响[J].长江科学院院报,2022,39(11):149-153.
[8] 王萧萧,申向东,王海龙,等. 石粉掺量对轻骨料混凝土性能的影响[J].建筑材料学报,2015,18(1):49-53.
[9] CHE Dong-lin, WANG Jia-jun, DING Zhi-wei,et al. Research on the Performance of Manufactured Sand Concrete with Different Stone Powder Content[C]//E3S Web of Conferences. DOI: 10.1051/e3sconf/202128301044.
[10] 于本田,刘 通,王 焕,等. 花岗斑岩石粉含量对混凝土性能及微观结构的影响[J].吉林大学学报(工学版),2022,52(5):1052-1062.
[11] 谢开仲,王红伟,肖 杰,等. 石粉含量对机制砂混凝土力学性能影响试验[J].建筑科学与工程学报,2019,36(5):31-38.
[12] 林基泳,蒋 勇,吴兴颜,等. 石粉对混凝土性能影响的研究现状[J].硅酸盐通报,2018,37(12):3842-3848.
[13] 杨卓强,刘元珍. 石粉掺量对机制砂高性能混凝土强度及耐久性能影响研究[J].混凝土,2018(7):69-71,75.
[14] 游秋森,张显羽,李新宇,等. 凝灰岩石粉对水工泵送混凝土性能影响[J/OL].长江科学院院报.[2022-09-15].https://kns.cnki.net/kcms/detail/42.1171.TV.20220321.1346.006.html.
[15] 蔡胜华,孙明伦,王海生等.石粉含量对碾压混凝土性能的影响[J].长江科学院院报,2007,24(5):76-78.
[16] 肖开涛,董 芸,杨华全.石灰石粉用作碾压混凝土掺和料的试验研究[J].长江科学院院报,2009,26(4):44-47.
[17] 史才军,王德辉,贾煌飞,等. 石灰石粉在水泥基材料中的作用及对其耐久性的影响[J].硅酸盐学报,2017,45(11):1582-1593.
[18] 李 响,石 妍,李家正,等. 含凝灰岩粉复合胶凝材料抗压强度发展规律[J].建筑材料学报,2017,20(3):435-438.
[19] 肖 佳. 水泥-石灰石粉胶凝体系特性研究[D].长沙:中南大学,2008.
[20] 刘战鳌,周明凯,李北星. 石粉对机制砂混凝土性能影响的研究进展[J].材料导报,2014,28(19):100-103.
[21] WANG D,SHI C,FARZADNIA N,et al.A Review on Effects of Limestone Powder on the Properties of Concrete[J].Construction and Building Materials,2018,192:153-166.
[22] 张冬梅,王晓利. 石粉对统砂石混凝土性能影响的研究[J].施工技术,2015,44(12):50-53.
[23] 袁 航,谢友均. 石灰石粉细度对混凝土性能的影响[J].粉煤灰,2009,21(2):13-15.
[24] 何锦云,张红丹,冯旭准,等. 石灰石粉细度对水泥混凝土性能的影响研究[J].河北工程大学学报(自然科学版),2015,32(3):62-65.
[25] 丁华柱,刘 围,都增延,等. 石灰石粉掺量和细度对混凝土性能的影响[J].重庆建筑,2015,14(11):48-50.
[26] 陈撰文. 石粉混凝土力学性能及细观结构特征试验研究[D].西安:西安科技大学,2021.
[27] MOON G D, OH S, JUNG S H, et al. Effects of the Fineness of Limestone Powder and Cement on the Hydration and Strength Development of PLC Concrete[J]. Construction and Building Materials, 2017, 135: 129-136.
[28] 马强强,王亚萍,陈 晨. 基于正交试验掺石粉混凝土性能的影响[J].山西建筑,2022,48(7):102-106.
[29] 王稷良. 机制砂特性对混凝土性能的影响及机理研究[D].武汉:武汉理工大学,2008.
[30] 孙茹茹. 不同岩性石粉-水泥基复合胶凝材料性能研究[D].北京:中国铁道科学研究院,2020.
[31] NADERPOUR H, RAFIEAN A H, FAKHARIAN P. Compressive Strength Prediction of Environmentally Friendly Concrete Using Artificial Neural Networks[J]. Journal of Building Engineering, 2018, 16: 213-219.
[32] 李地红,高 群,夏 娴,等. 基于BP神经网络的混凝土综合性能预测[J].材料导报,2019,33(增刊2):317-320.
[33] 王继宗,倪宏光. 基于BP神经网络的水泥抗压强度预测研究[J].硅酸盐学报,1999(4):26-32.
[34] 申嘉荣,徐千军. 碾压混凝土坝层面抗剪断强度的人工神经网络与模糊逻辑系统预测[J].清华大学学报(自然科学版), 2019,59(5):345-353.
[35] 万崔星,孙 敏. 基于BP神经网络的纤维混凝土力学性能预测模型[J].科技通报, 2021,37(8):90-93,99.
基金
国家自然科学基金项目(51509200,52008336)