为探究包边填砂路堤荷载作用下的极限承载力特性、破坏形态规律及加筋性状,设计了土工格栅加筋包边填砂路堤结构,改装美国GCTS公司的USTX-2000动静三轴加载装置进行加载,通过改变加筋层数、筋材布置长度及包边土厚度对土工格栅包边填砂路堤进行一系列试验。对不同工况下包边填砂路堤的极限承载力、封层及坡面法向累积变形、位移变化进行研究。试验结果表明:土工格栅加筋和增加包边土厚度可以显著提高包边填砂路堤的极限承载力,并能减小封层中、封层右及坡顶、坡中的法向累积变形;无筋路堤的滑动面在路堤内呈折线状且并未通过坡脚侵入地基,在坡顶的黏土和砂芯交界处产生最大位移;土工格栅加筋及增加包边土厚度可以使滑动面向路堤内部迁移但形态不变,且最大位移处向路堤内部迁移。
Abstract
Sand-filled embankment with cover layer is an important embodiment of the green road concept. In order to investigate the ultimate bearing capacity characteristics, failure morphology and reinforcement behavior of sand-filled embankment under load, we designed a model of geogrid-reinforced sand-filled embankment, and modified US GCTS’s USTX-2000 dynamic and static triaxial loading device for loading tests on the model with varied reinforcement layer, reinforcement length, and cover thickness. According to the obtained results of ultimate bearing capacity, normal cumulative deformation and displacement change of the embankment slope and cover layer, we concluded that the geogrid reinforcement could significantly improve the ultimate bearing capacity of the sand-filled embankment and reduce the normal cumulative deformation on the right and middle side of the embankment cover as well as on the top and middle of the slope; so does increasing the cover thickness. The sliding surface of unreinforced embankment was a broken line in the embankment and did not invade the foundation through the slope toe; and the maximum displacement occurred at the boundary between the clay and the sand core at the top of the slope. Geogrid reinforcement and increasing the thickness of the cover layer soil could make the sliding surface and the maximum displacement move towards the interior of the embankment without changing the shape.
关键词
土工格栅 /
包边填砂路堤 /
极限承载力 /
加筋性状 /
累积变形 /
滑动面
Key words
geogrid /
sand-filled embankment with cover layer /
bearing capacity /
reinforcement behavior /
cumulative deformation /
sliding surface
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 蒋 鑫,凌建明,李 进.高速公路填砂路基设计若干关键问题.地下空间与工程学报,2011,7(3):570-575.
[2] 张大伟.长江口细砂在高等级道路工程中的应用.城市道桥与防洪,2002(4):33-37.
[3] 陶 涛,陈志明,徐永福,等.吹填海砂路基包边土厚度确定方法研究.中外公路,2016,36(1):32-36.
[4] 严超群,钱劲松,杨 戈.路面结构对填砂路基不均匀沉降变形的力学响应.灾害学,2014,29(2):16-19.
[5] 黄槐轩,张再武.江汉平原软土地基填砂路基包边土施工时效性研究.交通科技,2014(5):74-76.
[6] ROSA L S, STEVE L W. Airfields and Roads Construction Using Fiber Stabilization of Sands. Journal of Transportation Engineering, 2007, 127(2): 96-104.
[7] CHAZALLON C, HOMYCH P, MOUHOUBI S. Elastoplastic Model for the Long-term Behavior Modeling of Unbound Granular Materials in Flexible Pavements. International Journal of Geomechanics, 2006, 6(4): 279-289.
[8] 贾致荣.包边填砂路基边坡稳定性分析.铁道建筑,2008(5):70-73.
[9] 谭 炜,贾致荣,杨若冲.包边填砂路基边坡稳定性计算方法研究.公路交通科技,2009,26(3):38-42.
[10] 张海霞.细砂路堤边坡稳定性分析.公路,2011(10):59-61.
[11] 李 飞,周 健,张 姣.土工合成材料加筋边坡宏细观机理模型试验研究.岩土工程学报,2012,34(6):1080-1087.
[12] 杨 庆,季大雪,栾茂田,等.土工格栅加筋路堤边坡结构性能模型试验研究.岩土力学,2005,26(8):1243-1246.
[13] 冯晓静,杨 庆,栾茂田,等. 土工格栅加筋路堤现场试验研究.大连理工大学学报,2009,49(4):564-570.
[14] 朱 湘,黄晓明.加筋路堤的室内模拟试验和现场沉降观测.岩土工程学报,2002,24(3):386-388.
[15] 高 昂,张孟喜,刘 芳,等.分级循环荷载下土工格室加筋路堤模型试验研究.岩土力学,2016,37(8):2213-2221.
[16] 高文华,BATHURST R J.条形荷载作用下加筋土边坡稳定性分析.岩石力学与工程学报,2007,26(2):374-380.
[17] JTG D20—2017,公路路线设计规范.北京:人民交通出版社,2017.
基金
国家自然科学基金项目(41372280,51808481);江苏省自然科学基金项目(BK20170477);四川省交通厅科技项目(2015A1-9)