为了分析深厚冲积层三排管冻结壁的力学特性,根据冻土弹性模量E、黏聚力c与冻结温度之间的函数关系以及三排管冻结壁的梯形-抛物弓等效温度场模型,将冻结壁视为材料性质沿着径向呈分段函数变化规律的厚壁圆筒,推导出了三排管非均质冻结壁的弹性区与塑性区应力的解析表达式,并给出了冻结壁承载力与塑性区相对半径之间的关系。根据淮南某矿区冻土的力学参数,利用提出的三排管非均质冻结壁计算方法对该矿区进风井冻结壁进行了力学特性分析,计算结果表明:三排管非均质冻结壁的径向应力随着相对半径r的增大而增加,而环向应力在冻结区间Ⅰ,Ⅱ,Ⅲ呈现不同的变化规律。对比分析三排管均质与非均质冻结壁的承载力计算结果可知,利用均质冻结壁计算方法得出的弹性极限承载力计算结果偏大,因此基于该结果的冻结壁设计方法存在一定的风险性,而非均质冻结壁的计算结果更加符合冻结壁实际的受力情况。研究成果可为深厚冲积层多排管冻结壁的设计提供一定的理论参考。
Abstract
In the light of the functional relationship between freezing temperature and elastic modulus E and cohesion c and by the aid of the trapezoid-parabola equivalent temperature field model, the analytical expressions of stress in elastic and plastic zones of triple-row-piped heterogeneous frozen soil wall were derived based on the assumption that the frozen wall is a thick cylinder with its material properties varying in segmented function along radial direction. The relationship between the bearing capacity of frozen wall and the relative radius of plastic zone was also given. Such calculation theories were applied to the mechanical property analysis for a frozen soil wall in a mine area of Huainan City. Results unveiled that the radial stress of the heterogeneous triple-row-piped frozen soil wall increased with the expansion of relative radius r, while circumferential stress in the Ⅰ, Ⅱ and Ⅲ intervals changed in different laws. Calculation results also demonstrated that the elastic ultimate bearing capacity of homogeneous frozen soil wall was too large, which is risky in design. Therefore, the calculation result of heterogeneous frozen soil wall was more consistent with the actual stress condition of frozen wall. The research findings offer important theoretical reference for the design of multi-row freezing in deep alluvium.
关键词
三排管非均质冻结壁 /
三排管均质冻结壁 /
梯形-抛物弓等效温度场 /
弹性极限承载力 /
弹塑性分析
Key words
triple-row-piped heterogeneous frozen soil wall /
triple-row-piped homogeneous frozen soil wall /
trapezoid-parabola equivalent temperature field /
ultimate elastic bearing capacity /
elastic and plastic analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 程 桦.深厚冲积层冻结法凿井理论与技术. 北京:科学技术出版社,2016.
[2] 管华栋,周晓敏. 基于围岩相互作用的冻结壁弹塑性分析对比研究. 岩土力学,2017,38(3):649-655.
[3] 荣传新,王秀喜,程 桦.深厚冲积层冻结壁和井壁共同作用机理研究.工程力学,2009,26(3):235-239.
[4] 彭世龙,荣传新,程 桦.基于广义开尔文模型的冻结壁和井壁共同作用下冻结压力解析解.长江科学院院报,2017,34(11):84-88,95.
[5] 汪仁和,曹荣斌. 双排管冻结下冻结壁温度场形成特征的数值分析.冰川冻土,2002,24(2):181-185.
[6] 肖朝昀,胡向东,张庆贺.多排管局部冻结冻土壁温度场特性.岩石力学与工程学报,2007,26(1):2694-2700.
[7] HU Xiang-dong. Average Temperature Model of Double-row-pipe Frozen Soil Wall by Equivalent Trapezoid Method//International Chinese Association of Computational Mechanics. Proceedings of the 2nd International Symposium on Computational Mechanics and the 12th International Conference on the Enhancement and Promotion of Computational Methods in Engineering and Science. Hong Kong, November 30-December 3, 2010: 1333-1338.
[8] HU Xiang-dong, SHE Si-yuan, YU Rui-zhi. Average Temperature Calculation for Straight Single-row-piped Frozen Soil Wall. Sciences in Cold and Arid Regions, 2011, 3(2): 124-131.
[9] 胡向东,赵 飞,佘思源,等.直线双排管冻结壁平均温度的等效抛物弓形模型[J]. 煤炭学报,2012,37(1) : 28-32.
[10] 胡向东,任 辉. 3排管冻结梯形-抛物弓叠合等效温度场模型和平均温度. 煤炭学报,2014,39(1):78-83.
[11] 胡向东,汪 洋. 三排管冻结温度场的势函数叠加法解析解.岩石力学与工程学报, 2012, 31(5): 1071-1080.
[12] 胡向东,舒 畅.考虑FGM特性的双排管竖井冻结壁应力场分析.工程力学,2014,31(1):145-153.
[13] 王 彬, 荣传新, 程 桦.考虑与周围土体相互作用的非均质冻结壁力学特性分析.煤炭学报,2017,42(增刊2):354-361.
[14] 王 彬,荣传新,程 桦. 基于DP准则双排管冻结壁力学特性理论分析.科学技术与工程, 2016, 16(25): 44-50.
[15] 胡向东,舒 畅,佘思源.均布荷载下抛物线形FGM冻结壁弹塑性解. 煤炭学报, 2012, 37(3): 379-384.
[16] 曹雪叶,赵均海,张常光. 基于统一强度理论的冻结壁弹塑性应力分析. 岩土力学,2017,38(3):769-774,809.
[17] 吴家龙.弹性力学.北京:高等教育出版社,2011.
[18] 郑颖人. 岩土塑性力学基本原理. 北京:中国建筑工业出版社,2002.
[19] 徐秉业. 应用弹塑性力学. 北京:清华大学出版社,1995.
[20] 杨维好,杨志江,柏东良,等. 基于与围岩相互作用的冻结壁弹塑性设计理论. 岩土工程学报, 2013, 35(1): 175-180.
[21] 杨维好,杜子博,杨志江,等.基于与围岩相互作用的冻结壁塑性设计理论.岩土工程学报,2013,35(10):1857-1862.
[22] 汪仁和,李栋伟,王秀喜. 摩尔-库伦强度准则计算冻结壁应力场和位移场. 工业建筑,2005, 35(10): 40-42.
基金
国家自然科学基金项目(51878005,51374010,51474004)