为研究土工织物加筋尾矿砂界面力学特性,在不同的尾矿砂含水率、试验拉拔速率和竖向压强下开展一系列土工布及土工格栅的拉拔试验。比较相同条件下的土工格栅与土工布拉拔试验结果可知:土工布对细粒尾矿砂的加筋效果优于土工格栅的加筋效果,竖向压强较大时两者的拉拔力峰值差值增大;随尾矿砂含水率增加,界面剪应力峰值明显减小,界面剪应力峰值在含水率1.2%时比含水率8.4%时增加50%以上,表观黏聚力先增加后减小,在最优含水率附近时达到最大,界面摩擦角先快速减小后缓慢减小;随试验拉拔速率增加,界面剪应力峰值缓慢增加,表观黏聚力先增加后减小,界面摩擦角先减小后增加;各工况下剪应力峰值均随竖向压强的增大而增大。研究结果可为土工织物加筋尾矿坝工程设计提供参考。
Abstract
In order to study the mechanical properties of the reinforced interface between geotextile and fine tailings sand, we carried out pull-out tests on geogrid and geotextile under different test pull-out rates and different vertical pressures with varying moisture content of tailings sand. By comparing the pull-out test results of geogrid and geotextile under the same conditions, we conclude that geotextile has stronger reinforcement effect on fine tailings sand, and when vertical pressure is higher, the difference between the reinforcement effect on geotextile and geogrid is larger. With the rising of moisture content of tailings sand, the peak value of interfacial shear stress drops obviously: the interfacial shear stress at a moisture content of 1.2% is 1.5 times that when moisture content is 8.4%. Apparent cohesion increases at first but then decreases, with the peak value appearing near the optimal moisture content, whereas interfacial friction angle reduces rapidly at first and then declines slowly afterwards. With the augment of pull-out rate, the peak value of interfacial shear stress climbs slowly, and the apparent cohesion increases at first and then decreases, while the interfacial friction angle decreases at first and then increases. Under all working conditions, the peak value of shear stress increases linearly with the rising of vertical pressure.
关键词
土工布 /
土工格栅 /
拉拔试验 /
加筋特性 /
尾矿砂含水率
Key words
geotextile /
geogrid /
pull-out test /
reinforcement properties /
moisture content of tailings sand
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨广庆. 土工格栅加筋土结构理论及工程应用[M]. 北京: 科学出版社, 2010.
[2] ANUBHAV S, BASUDHAR P K. Modeling of Soil-woven Geotextile Interfaces Behavior from Direct Shear Test Results[J]. Geotextiles and Geomembranes, 2010, 28(4): 403-408.
[3] 苏立海,李 宁,朱才辉. 土工布加筋土的三轴蠕变实验研究[J]. 岩石力学与工程学报, 2016, 35(6): 1273-1280.
[4] 张 嘎, 张建民. 土与土工织物接触面力学特性的试验研究[J]. 岩土力学, 2006, 27(1): 51-55.
[5] 赵晓龙, 陆晓平, 荣绍洋, 等. 基于三轴试验的土工布加筋粗颗粒土变形及强度分析[J]. 水电能源科学, 2018, 36(8): 120-123.
[6] 朱顺然, 徐 超, 丁金华. 土工织物-砂土界面的叠环式剪切试验[J]. 岩土力学, 2018, 39(5): 1775-1780,1788.
[7] 包承纲, 汪明远, 丁金华. 格栅加筋土工作机理的试验研究[J]. 长江科学院院报, 2013, 30(1): 34-41.
[8] LIU C N, HO Y H, HUANG J W. Large-scale Direct Shear Tests of Soil/PET-yarn Geogrid Interfaces[J]. Geotextiles and Geomembranes, 2009, 27(1): 19-30.
[9] 杨广庆, 李广信, 张保俭. 土工格栅界面摩擦特性试验研究[J]. 岩土工程学报, 2006, 28(8): 948-952.
[10]史旦达, 刘文白, 水伟厚, 等. 单、双向塑料土工格栅与不同填料界面作用特性对比试验研究[J]. 岩土力学, 2009, 30(8): 2237-2244.
[11]黄文彬, 陈晓平. 土工织物与吹填土界面作用特性试验研究[J]. 岩土力学, 2014, 35(10): 2831-2837.
[12]李丽萍, 吕艳平, 赖丰文. 土工格栅与土界面的拉拔试验分析[J]. 有色金属(矿山部分), 2016, 68(6): 62-69.
[13]丁鲁强, 李大勇, 陈福全. 土工格栅与饱和细砂的界面特性试验研究[J]. 长江科学院院报, 2018, 35(11): 101-106.
[14]王 军, 刘飞禹, 王 攀, 等. 土工布与砂土界面循环剪切动力特性[J]. 交通运输工程学报, 2016, 16(6): 12-20.
[15]刘飞禹, 林 旭, 王 军. 砂土颗粒级配对筋土界面抗剪特性的影响[J]. 岩石力学与工程学报, 2013, 32(12): 2575-2582.
[16]杨 敏, 李 宁, 刘新星, 等. 土工布加筋土界面摩擦特性试验研究[J]. 西安理工大学学报, 2016, 32(1): 46-51.
[17]周 健, 王家全, 孔祥利, 等. 砂土颗粒与土工合成材料接触界面细观研究[J]. 岩土工程学报, 2010, 32(1): 61-67.
[18]赵晓龙, 陆晓平, 荣绍洋, 等. 土工布加筋粗颗粒土变形与强度特性试验研究[J]. 工程科学与技术, 2018, 50(6): 165-173.
[19]刘湘元, 彭 立, 杜勇立, 等. 有纺土工布与粘土的界面摩擦特性试验研究[J]. 中外公路, 2014, 34(2): 229-232.
[20]徐 进. 尾矿料物理力学性质试验研究及尾矿坝动力稳定性分析[D]. 长沙: 中南大学, 2007.
[21]易 富, 杜常博, 张利阳. 金尾矿与土工格栅界面摩擦特性的试验[J]. 安全与环境学报, 2017, 17(6): 2217-2221.
基金
国家自然科学基金项目(51774163):辽宁省教育厅科研基金项目(LJYL054):鞍钢科研项目(2018-科A19)