以含结构面的岩质边坡为例,首先采用ANSYS进行建模与网格划分;之后使用FLAC3D软件内置接触面语句,建立固定的滑动面倾角;最后采用强度折减法求解边坡的安全系数。通过对理论公式的推导与数值模拟结果的拟合,得出如下结论:①在岩质边坡中,通过理论推导,将最优锚固角定义为锚杆自由段承受最大抗滑力时所对应的锚固角。②当坡率固定时,锚固角与安全系数呈负相关关系,随着锚固角增大,安全系数逐渐减小;当滑动面倾角固定时,在最优锚固角状态下,边坡的安全系数随着边坡坡率的增大而减小。③当滑动面倾角固定时,锚固角与安全系数呈负相关关系,随着锚固角的增大,安全系数逐渐减小;当坡率固定时,在最优锚固角状态下,随着边坡滑动面倾角的增大,安全系数先减小后增大。
Abstract
The influences of slope rate of rock slope and inclination angle of sliding surface on anchoring effect are investigated in this paper. ANSYS is employed used for modeling and meshing of rock slope with structural plane; FLAC3D is used to build a known inclination of sliding surface; and finally, strength reduction method is adopted to solve the safety factor of the slope, and the functional relation between anchoring angle and safety factor in the presence of varied slope rate and inclination of sliding surface was obtained. Through fitting of the theoretical formula and the numerical simulation results, we conclude that: (1) In rock slope, through theoretical deduction, the optimal anchorage angle is defined as the anchorage angle corresponding to the maximum anti-sliding force in the free section of the anchor. (2) When the slope rate is known, anchorage angle is in a negative correlation with safety factor, which suggest that safety factor decreases gradually with the increase of anchorage angle. When the inclination angle of sliding surface is known, the safety factor of slope declines with the increase of slope rate in the presence of the optimum anchorage angle. (3) When the inclination angle of sliding surface is known, anchorage angle has a negative correlation with safety factor, implying that safety factor reduces gradually with the augment of anchorage angle. When slope ratio is known, safety factor drops first and then rises with the increase of inclination angle in the presence of the optimum anchorage angle.
关键词
岩质边坡 /
坡率 /
滑动面倾角 /
锚固角 /
数值模拟 /
安全系数 /
滑动面
Key words
rock slope /
slope rate /
inclination angle of sliding surface /
anchorage angle /
numerical simulation /
safety factor /
sliding surface
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱晗迓, 孙红月, 汪会帮, 等. 边坡加固锚索预应力变化规律分析[J]. 岩石力学与工程学报,2004, 23(16): 2756-2760.
[2] 范宇洁, 万胜武. 预应力锚索有效锚固长度和极限抗拔力的计算[J]. 地下空间与工程学报, 2006,2(4): 672-675.
[3] 张永安, 李 峰, 蒋 鸥. 泥岩高边坡锚索预应力变化规律分析[J]. 岩石力学与工程学报, 2007, 26(9):1888-1892.
[4] 徐 青, 徐 寅, 陈胜宏, 等. 复杂岩质边坡预应力锚索优化设计[J]. 长江科学院院报, 2011, 28 (2): 32-37.
[5] 黄雪峰, 马 龙, 陈帅强, 等. 预应力锚杆内力传递分布规律与时空效应[J]. 岩土工程学报, 2014, 36(8): 1521-1525.
[6] JIANG Shui-hua, LI Dian-qing, ZHANG Li-min, et al. Time-dependent System Reliability of Anchored Rock Slopes Considering Rock Bolt Corrosion Effect[J]. Engineering Geology, 2014, 175: 1-8.
[7] 邓东平, 李 亮. 考虑预应力损失的锚索加固条件下边坡长期稳定性分析[J]. 长江科学院院报,2016,33(10):93-97.
[8] 张发明,刘汉龙,赵维炳. 预应力锚索加固岩质边坡的设计实例[J]. 岩土力学, 2000, 21(2): 177-179.
[9] 苏志满,徐林荣. 预应力锚索优化设计统一理论探讨[J]. 水文地质工程地质, 2006,33(5): 26-29.
[10]熊文林,何则干,陈胜宏. 边坡加固中预应力锚索方向角的优化设计[J]. 岩石力学与工程学报, 2005,24(13):2260-2265.
[11]王智德,夏元友,周 雄,等. 顺层岩质边坡预支护开挖及锚索优化设计研究[J]. 地下空间与工程学报,2014, 10(6):1400-1407.
[12]林 杭,钟文文,熊 威, 等. 锚杆长度与边坡坡率对最优锚固角的影响[J]. 岩土工程学报, 2014, 36(增刊2): 7-11.
[13]廖 峻,李江腾,郝瑞卿,等. 顺层岩质边坡稳定性及预应力锚杆加固研究[J]. 中南大学学报(自然科学版), 2014, 45(1):231-236.