土中中风化嵌岩抗拔桩承载机理研究

穆锐,浦少云,黄质宏,戴自然,陈俊生,刘一宏

长江科学院院报 ›› 2019, Vol. 36 ›› Issue (2) : 116-121.

PDF(2387 KB)
PDF(2387 KB)
长江科学院院报 ›› 2019, Vol. 36 ›› Issue (2) : 116-121. DOI: 10.11988/ckyyb.20170871
岩土工程

土中中风化嵌岩抗拔桩承载机理研究

  • 穆锐1,浦少云2,黄质宏1,戴自然3,陈俊生1,刘一宏1
作者信息 +

Bearing Mechanism of Moderately Weathered Rock-socketed Uplift Pile in Soil

  • MU Rui1,PU Shao-yun2,HUANG Zhi-hong1,DAI Zi-ran3,CHEN Jun-sheng1,LIU Yi-hong1
Author information +
文章历史 +

摘要

根据某工程中风化嵌岩抗拔桩自平衡静载原位试验,对试验数据进行简要分析,结合该工程地质条件,选择合理的岩土力学参数和试验数据,建立了合理嵌岩抗拔桩FLAC3D数值分析模型。运用所建立的数值模型对3根抗拔桩进行自平衡试验直至破坏,确定了各桩的极限承载力,并且研究了同一条件下不同嵌岩深度对抗拔桩的极限承载力的影响及抗拔桩桩侧阻力、桩身轴力随外荷载的变化情况。研究结果表明:①风化岩石地区建立模型时,岩石剪切模量及体积模量需要按试验换算值折减到1/10左右,才可建立合理的数值模型;②嵌岩抗拔桩的极限承载力主要受嵌岩深度的影响,同一条件下,嵌岩抗拔桩极限承载能力随嵌岩深度、桩长增加而增大,且桩设计时其嵌岩深度不宜太小;③随着埋置深度的增加,桩侧阻力先增大后减小,桩中间侧阻力对极限抗拔承载力贡献最大;④抗拔桩的桩径对极限承载力具有尺寸效应。

Abstract

According to in-situ self-balancing static loading test of uplift pile in moderately weathered rock, a FLAC3D numerical analysis model of rock-socketed uplift pile is established based on reasonable rock mechanics parameters and test data together with the geological condition of the project. By using this model, three uplift piles undergone self-balancing test until failure were simulated to determine the ultimate bearing capacity of each pile and to further examine the influence of rock socket depth on the ultimate bearing capacity of uplift pile and the variations of lateral resistance and axial force of pile with external load. Results demonstrate that: (1) The shear modulus and volumetric modulus of rock should be reduced by 1/10 of test values when building a rational numerical model. (2) The ultimate bearing capacity of rock-socketed uplift pile is mainly affected by the socketed depth of rock. Under the same condition, the ultimate bearing capacity of rock-socketed uplift pile increases with the socketed depth of rock and the length of pile, and the rock-socketed depth of pile should not be too small. (3) With the increase of rock-socketed depth, the side resistance of pile increases first and then decreases, and the middle resistance of pile contributes the most remarkably to the ultimate bearing capacity. (4) The diameter of uplift pile has size effect on ultimate bearing capacity.

关键词

嵌岩抗拔桩 / 自平衡试验 / 承载特性 / 极限承载力 / 嵌岩深度 / FLAC3D数值模拟分析

Key words

rock-socketed piles / self-balancing test / load-bearing characteristics / ultimate bearing capacity / rock-socketed depth / FLAC3D numerical simulation analysis

引用本文

导出引用
穆锐,浦少云,黄质宏,戴自然,陈俊生,刘一宏. 土中中风化嵌岩抗拔桩承载机理研究[J]. 长江科学院院报. 2019, 36(2): 116-121 https://doi.org/10.11988/ckyyb.20170871
MU Rui,PU Shao-yun,HUANG Zhi-hong,DAI Zi-ran,CHEN Jun-sheng,LIU Yi-hong. Bearing Mechanism of Moderately Weathered Rock-socketed Uplift Pile in Soil[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(2): 116-121 https://doi.org/10.11988/ckyyb.20170871
中图分类号: TU473.1   

参考文献

[1] 王耀辉, 谭国焕, 李启光. 模型嵌岩桩试验及数值分析[J].岩石力学与工程学报, 2007, 26(8):1691-1697.
[2] 何思明.抗拔桩破坏特性及承载力研究[J] .岩土力学,2001,22(3):307-319.
[3] 唐孟雄,陈 达.基岩内抗拔桩极限承载力的计算方法[J] .岩土力学,2015,36(2):634-638.
[4] 汪光满,宋仁乾,胡达敏,等.复杂岩溶地质条件下嵌岩冲孔灌注桩设计[J] .建筑结构学报,2015,45(增刊):85-87.
[5] JOHNSON S M, KAVANAGH C T. The Design of Foundations for Buildings[M].New York: McGraw-Hill Book Company, 1968.
[6] MEYERHOF G G. Uplift Resistance of Inclined Anchors and Piles[C] ∥Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineerin. Moscow: Kluwer Academic Publishers-Plenum Publishers, August 6-11, 1973: 167-172.
[7] DAS B M. A Procedure for Estimation of Uplift Capacity of Rough Piles[J].Soils and Foundations, 1983, 23(3):122-126.
[8] DAS B M. Principles of Foundation Engineering[M].Edition 7. Stanford, USA: Cengage Learning, 2010.
[9] CHATTOPADHYAY B C, PISE P J. Uplift Capacity of Piles in Sand[J].Journal of Geotechnical Engineering,1986, 112(9): 88-90.
[10] SHANKER K,BASUDHAR P K,PATRA N R.Uplift Capacity of Single Piles:Predictions and Performance[J].Geotechnical and Geological Engineering,2007,25(2):151-161.
[11] DESHMUKH V B, DEWAIKAR D M, CHOUDHURY D. Computations of Uplift Capacity of Pile Anchors in Cohesionless Soil[J].Acta Geotechnica, 2010, 5(2): 87-94.
[12] JT/T 738—2009, 基桩自平衡法静载试验技术规程[S].南京: 江苏科学技术出版社, 2009.
[13] JGJ 106—2014, 建筑基桩检测技术规范[M].北京:中国建筑工业出版社, 2014.
[14] GB 50007—2011,建筑地基基础设计规范[M].北京:中国建筑工业出版社, 2012.
[15] 刘 衡, 杨 波, 王铁行. 厚层沉渣嵌岩桩承载性能试验分析与数值模拟[J].铁道建筑, 2012,(12):93-95.
[16] 孙书伟, 林 杭, 任连伟. FLAC3D在岩土工程中的应用[M].北京:中国水利水电出版社, 2011.
[17] 桩基工程手册编写委员会. 桩基工程手册[M].北京: 中国建筑工业出版社, 1995.

基金

贵州省土木工程一流学科建设项目(QYNYL〔2017〕0013);贵州省科学技术基金项目(黔科合J字〔2015〕2037号)

PDF(2387 KB)

Accesses

Citation

Detail

段落导航
相关文章

/