在入库沙量大幅减少的背景下,三峡水库持续开展汛期中小洪水调度,增大了汛期库区泥沙淤积和防洪风险,减少了水库下泄大流量的机会。在三峡水库汛期,开展“蓄清排浑”泥沙调度方式动态运用研究有助于进一步优化三峡水库汛期调度方式。利用三峡水库干支流河道一维非恒定流数学模型,探索开展了三峡水库汛期 “蓄清排浑”动态运用方式计算研究,并提出了汛期“蓄清排浑”动态运用方案。计算结果表明:三峡水库汛期“蓄清排浑”动态运用方式可以同时兼顾排沙、发电和防洪,“蓄清”水位150 m要优于155 m,“蓄清”运行期间库水位可选择在145~150 m之间浮动运行;建议将寸滩含沙量达到2.0 kg/m3且当日寸滩站入库流量≥25 000 m3/s的时间作为水库增泄“排浑”的起始时间,将出库含沙量降至约0.1 kg/m3作为“排浑”调度结束重新进入“蓄清”调度的泥沙参考因素。研究成果可为三峡水库汛期优化调度提供参考。
Abstract
Under the background of a large reduction in the sediment into the Three Gorges Reservoir (TGR), dispatching of medium-and-small-scale flood in flood season has exacerbated the risks of sediment deposition and flood control in TGR and reduced the chances of large discharge of the reservoir. Studying the dynamic dispatching of “storing clear water and releasing muddy water” in flood season is conducive to further optimizing the dispatching mode. Using one-dimensional unsteady flow mathematical model of the mainstream and tributaries of TGR, we put forward the dynamic operation scheme of “storing clear water and releasing muddy water” in flood season of TGR through calculations. The calculation results illustrate that the dynamic operation mode of “storing clear water and releasing muddy water” in flood season takes into account both sediment discharge, power generation and flood control. A water level at 150 m when “storing clear water” is superior to 155 m; the water level can fluctuate between 145 m and 150 m in the period of “storing clear water”. We recommend to start the releasing of muddy water when the sediment concentration of Cuntan station reaches 2.0 kg/m3 and meanwhile the incoming flow of Cuntan station on that day exceeds 25 000 m3/s; on the contrary, when the sediment concentration of Cuntan station falls to about 0.1 kg/m3 , we suggest to end the releasing of muddy water and begin to store clear water. The research findings provide reference for the optimal operation of TGR in flood season.
关键词
三峡水库 /
蓄清排浑 /
动态运用 /
汛期 /
水位 /
含沙量
Key words
Three Gorges Reservoir /
storing clear water and releasing muddy water /
dynamic operation /
flood season /
water level /
sediment concentration
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 水利部长江水利委员会. 长江三峡水利枢纽初步设计报告[R]. 武汉:水利部长江水利委员会,1992.
[2] 长江水利委员会水文局. 2015年度三峡水库进出库水沙特性、水库淤积及坝下游河道冲刷分析[R]. 武汉:长江水利委员会水文局,2016.
[3] 黄仁勇, 张细兵. 三峡水库运用前后进出库水沙变化分析[J]. 长江科学院院报,2011,28(9): 75-79.
[4] 胡春宏, 王延贵. 三峡工程运用后泥沙问题与江湖关系变化[J]. 长江科学院院报,2014,31(5): 107-116.
[5] 李志远. 基于来沙量减少的三峡水库运行水位的思考[J]. 长江科学院院报,2012,29(10): 11-15.
[6] 董耀华,惠晓晓,蔺秋生. 长江干流河道水沙特性与变化趋势初步分析[J]. 长江科学院院报,2008,25(2): 16-20.
[7] 蔺秋生,黄 莉,姚仕明. 长江上游干流近期水沙变化规律分析[J]. 人民长江,2010,41(10): 5-8.
[8] 郑守仁. 三峡水库实施中小洪水调度风险分析及对策探讨[J]. 人民长江,2015, 46(5): 7-12.
[9] 邹 强,胡向阳,周 曼. 三峡水库洪水资源利用Ⅱ:风险分析和对策措施[J]. 人民长江,2018, 49(4): 11-16,22.
[10]黄仁勇,王 敏,张细兵,等. 三峡水库汛期“蓄清排浑”动态运用方式初探[J]. 长江科学院院报,2018, 35(7): 9-13.
[11]黄仁勇,黄 悦. 三峡水库干支流河道一维非恒定水沙数学模型初步研究[J]. 长江科学院院报,2009, 26(2): 9-13.
[12]黄仁勇,李 飞,张细兵. 三峡水库运用初期库区水沙输移数值模拟[J]. 长江科学院院报,2012, 29(1): 7-12.
[13]黄仁勇, 王 敏, 张细兵,等. 三峡水库区间入流过程计算[J]. 长江科学院院报,2018,35(6): 67-69.
[14]胡向阳,邹 强,周 曼. 三峡水库洪水资源利用Ⅰ:调度方式和效益分析[J]. 人民长江,2018, 49(3): 15-22.
[15]黄仁勇. 长江上游梯级水库泥沙输移与泥沙调度研究[D]. 武汉: 武汉大学, 2016.
基金
国家重点研发计划项目(2016YFC0402309,2016YFC0402304,2017YFC0405304,2017YFC0405306,2016YFC0402305,2016YFC0402306);国家自然科学基金项目(51779014);中央级公益性科研院所基本科研业务费项目(CKSF2015049,CKSF2019411HL,CKSF2019490HL);三峡水库科学调度关键技术第二阶段研究项目(SXSN/4107,SXSN/4277) ;三峡工程泥沙重大问题研究项目(12610100000018J129-02);三峡后续工作项目(ZZ2018059-016F);美丽中国生态文明建设科技工程专项(XDA23040502)