两坝间河道高含沙水流驱动的下游船闸阀门井水位异常特征分析

杨忠勇, 李林, 孙诗为, 张勇, 唐艳平, 王紫阳, 刘新健, 徐杨

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (9) : 79-85.

PDF(2246 KB)
PDF(2246 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (9) : 79-85. DOI: 10.11988/ckyyb.20231379
水力学

两坝间河道高含沙水流驱动的下游船闸阀门井水位异常特征分析

作者信息 +

Abnormal Water Level Increase in the Valve Shaft of a Ship Lock Induced by High Density Currents in Impounded River

Author information +
文章历史 +

摘要

葛洲坝船闸充水阀门井与输水廊道进水口水体相连,1993年洪季期间曾发生过阀门井水位异常升高,影响船闸设备设施安全等问题。为分析葛洲坝一号船闸充水阀门井水位异常升高的根本原因,基于Mike三维水沙数值模型,模拟分析了不同流量和含沙量级别下的河道水流和含沙量垂向分布结构特征,进而计算阀门井水位异常升高值与河道水流和含沙量的关系,反演1993年洪季葛洲坝一号船闸两个阀门井出现的水位异常现象。研究结果表明,葛洲坝一号船闸阀门井水位异常超过阈值0.5 m的流量和含沙量条件分别约为(30 000 m3/s,2.85 kg/m3),(40 000 m3/s,1.42 kg/m3),(50 000 m3/s,1.23 kg/m3) 。受三峡水库及上游梯级水库蓄水拦沙、退耕还林政策等因素的影响,未来葛洲坝船闸出现高含沙水流导致阀门井水位异常升高>0.5 m的可能性极小,但在三峡水库排沙泄洪期间仍应引起重视。研究成果可为葛洲坝一号船闸安全营运和科学管理提供参考依据。

Abstract

The valve shaft of Gezhouba dam ship lock is connected to the transmission gallery of the river area. During the flood season of 1993, the water level in the valve shaft increased abnormally, jeopardizing the safety of the lock’s equipment and facilities. To investigate the causes of the abnormal water level rise in the valve shaft of the Gezhouba ship lock, we examined the quantitative relationship between high-sediment-concentration flow and abnormal water levels. Using the Mike-3D numerical model, we simulated the vertical distribution of flow and sediment concentration under various discharge rates and sediment concentrations. We then calculated the relationship between the abnormal water levels in the valve shaft and sediment concentration. Based on these simulations, we explained the abnormal water level increases in the two valve shafts of the Gezhouba ship lock during 1993. Finally, we assessed the likelihood of future abnormal water level increases in the valve shafts. The modelling result reveals that the discharge and sediment concentration at approximately (30 000 m3/s, 2.85 kg/m3), (40 000 m3/s, 1.42 kg/m3), and (50 000 m3/s, 1.23 kg/m3), respectively, would lead to the abnormal water level increase exceeding 0.5 m. Following the construction of cascade reservoirs in the upstream and the implementation of China’s policy of returning farmland to forests, the probability of water level rise exceeding 0.5 m is now quite low. The findings offer valuable management insights for the safe operation of the Gezhouba ship lock.

关键词

葛洲坝船闸 / 阀门井 / 水沙数值模拟 / 高含沙水流 / 水位异常

Key words

Gezhouba ship lock / valve shaft / water-sediment numerical simulation / high density flow / abnormal water level

引用本文

导出引用
杨忠勇, 李林, 孙诗为, . 两坝间河道高含沙水流驱动的下游船闸阀门井水位异常特征分析[J]. 长江科学院院报. 2024, 41(9): 79-85 https://doi.org/10.11988/ckyyb.20231379
YANG Zhong-yong, LI Lin, SUN Shi-wei, et al. Abnormal Water Level Increase in the Valve Shaft of a Ship Lock Induced by High Density Currents in Impounded River[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 79-85 https://doi.org/10.11988/ckyyb.20231379
中图分类号: TV143   

参考文献

[1]
孙倩. 船闸闸墙长廊道输水系统灌水过程闸室水流条件模拟研究[D]. 重庆: 重庆交通大学, 2017.
(SUN Qian. Research on Hydraulic Characteristics of Long-culvert Filling and Emptying System of Shiplock during Filling Process[D]. Chongqing: Chongqing Jiaotong University, 2017. (in Chinese))
[2]
彭永勤, 张绪进. 孟洲坝二线船闸输水系统水力学试验研究[J]. 水运工程, 2016(8): 131-134, 150.
(PENG Yong-qin, ZHANG Xu-jin. Hydraulic Experiment on Filling & Emptying System of Mengzhouba Second-lane Lock[J]. Port & Waterway Engineering, 2016(8): 131-134, 150. (in Chinese))
[3]
陈明, 梁应辰, 宣国祥, 等. 船闸输水过程三维水力特性动态仿真研究[J]. 水动力学研究与进展A辑, 2013, 28(5): 559-565.
(CHEN Ming, LIANG Ying-chen, XUAN Guo-xiang, et al. Numerical Simulation for Dynamic Characteristics of 3D Flow during Shiplock Filling Process[J]. Chinese Journal of Hydrodynamics, 2013, 28(5): 559-565. (in Chinese))
[4]
王伟, 王亮. 船闸输水系统设计探讨[J]. 中国水运(下半月), 2015, 15(1): 214-215, 255.
(WANG Wei, WANG Liang. Discussion on the Design of Ship Lock Water Conveyance System[J]. China Water Transport (Second Half Month), 2015, 15(1): 214-215, 255. (in Chinese))
[5]
庄正新. 葛洲坝1号船闸充水阀门井水位异常升高的原因分析[J]. 水利水电技术, 1995(10): 26-27.
(ZHUANG Zheng-xin. Analysis of the Abnormal Rise in Water Level in the Inundation Valve Well of the Gezhouba Dam No. 1 Ship Lock[J]. Water Conservancy and Hydropower Technology, 1995(10): 26-27. (in Chinese))
[6]
宋维邦. 葛洲坝一号船闸充水阀门启闭机房淹水事故原因浅析[J]. 长江水利教育, 1995(4): 53-56.
(SONG Wei-bang. Preliminary Analysis of the Flooding Accident in the Filling Valve Control Room of the Gezhouba Dam No.1 Ship Lock[J]. Yangtze River Water Conservancy Education, 1995(4): 53-56. (in Chinese))
[7]
刘思海, 侍克斌, 张宏科, 等. 克孜尔水库异重流排沙分析及塑造技术研究[J]. 长江科学院院报, 2018, 35(10): 10-14.
(LIU Si-hai, SHI Ke-bin, ZHANG Hong-ke, et al. Technologies of Desilting by Creating Conditions for Density Flow in Kizil Reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(10): 10-14. (in Chinese))
[8]
黄硕, 黄文锐, 刘曙光, 等. 河口航道双丁坝影响下异重流运动特性[J]. 同济大学学报(自然科学版), 2023, 51(5): 728-737.
(HUANG Shuo, HUANG Wen-rui, LIU Shu-guang, et al. Effects of Double Groins on Motion Characteristics of Density Current in Estuarine Navigation Channel[J]. Journal of Tongji University (Natural Science), 2023, 51(5): 728-737. (in Chinese))
[9]
徐进超, 李云, 宣国祥, 等. 船闸引航道内的异重流淤积计算[J]. 水运工程, 2016(12): 89-94.
(XU Jin-chao, LI Yun, XUAN Guo-xiang, et al. Calculation of the Deposition Caused by Density Flow in Approach Channel of Ship Lock[J]. Port & Waterway Engineering, 2016(12): 89-94. (in Chinese))
[10]
史常乐, 牛兰花, 赵国龙, 等. 三峡大坝—葛洲坝河段水沙变化及冲淤特性[J]. 水科学进展, 2020, 31(6): 875-884.
(SHI Chang-le, NIU Lan-hua, ZHAO Guo-long, et al. Variation in Water and Sediment Conditions and Erosion and Deposition Characteristics in the Reach between Three Gorges Dam and Gezhou Dam[J]. Advances in Water Science, 2020, 31(6): 875-884. (in Chinese))
[11]
YANG S, ZHANG J, XU X. Influence of the Three Gorges Dam on Downstream Delivery of Sediment and Its Environmental Implications, YangtzeRiver[J]. Geophysical Research Letters, 2007, 34: L10401.
[12]
陈立, 王愉乐, 邹振华, 等. 三峡水库蓄水后下游河道悬沙恢复效率[J]. 水科学进展, 2023, 34(5): 697-707.
(CHEN Li, WANG Yu-le, ZOU Zhen-hua, et al. Efficiency of Suspended Sediment Recovery in the Downstream Reaches of the Three Gorges Reservoir[J]. Advances in Water Science, 2023, 34(5): 697-707. (in Chinese))
[13]
张成潇, 米博宇, 吕超楠, 等. 高洪水期运行水位对三峡水库泥沙淤积的影响[J]. 长江科学院院报, 2024, 41(6): 10-17.
(ZHANG Cheng-xiao, MI Bo-yu, Chao-nan, et al. Influence of Operating Water Level on Sediment Deposition in Three Gorges Reservoir during High Flood Levels[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(6): 10-17. (in Chinese))
[14]
YANG S, LI M, DAI S B, et al. Drastic Decrease in Sediment Supply from the Yangtze River and Its Challenge to Coastal Wetland Management[J]. Geophysical Research Letters, 2006, 33: L06408.
[15]
YANG Y, ZHENG J, ZHU L, et al. Influence of the Three Gorges Dam on the Transport and Sorting of Coarse and Fine Sediments Downstream of the Dam[J]. Journal of Hydrology, 2022, 615: 128654.

基金

葛洲坝一号船闸充水阀门度汛对策研究外委技术服务项目(HZ202257)
智慧长江与水电科学湖北省重点实验室开放研究基金项目(ZH2102000109)
重庆市住房和城乡建设委员会科技项目(城科字2023第6-14号)
湖北省自然科学基金项目(2022CFB207)

编辑: 王慰
PDF(2246 KB)

Accesses

Citation

Detail

段落导航
相关文章

/