为了充分利用现今普及的多核配置计算机,提高大规模梯级水库群优化调度问题的求解效率,提出了梯级水库群优化调度的粗粒度并行自适应混合粒子群算法。该方法以自适应混合粒子群算法为求解基础,采用粗粒度并行设计模式,利用Fork/Join多核并行框架的分治策略,将其初始种群递归划分为多个子种群,平均分配到不同的内核逻辑线程中实现并行计算,并在各子种群优化结束后,合并优化结果集从而输出全局最优解。以澜沧江下游梯级水库群发电优化调度为例,利用该方法进行计算。结果表明,该方法能充分发挥多核配置的计算性能,在4核环境下最大加速比达到3.97,缩短计算耗时1 787.2 s,计算效率显著提高,为我国不断扩张的大规模梯级水库群优化调度提供了一种切实可行的高效求解途径。
Abstract
To improve the computing efficiency of optimal operation of large-scale cascaded reservoirs, a coarse-grained parallel adaptive hybrid particle swarm optimization (PAHPSO) algorithm is proposed in full use of the popular multi-core computers. The method is based on adaptive hybrid particle swarm optimization (AHPSO) algorithm, and adopts the coarse-grain model and divide-and-conquer strategy of Fork/Join multi-core parallel framework to divide the initial population into multiple small-scale subpopulations, which are assigned to different logical threads averagely for parallel computing. After the optimization computation for all subpopulations, the optimization result sets are merged to obtain the globally optimal solution. The proposed algorithm is applied to the generation and operation of cascaded reservoirs located on the lower stream of Lancang River. Results show that the method gives full play to multi-core computer performance, and the maximum speedup in 4-core parallel environment reaches 3.97 with the time-consuming cutting down by 1 787.2 s. The computing efficiency has improved significantly and it provides a feasible and efficient solution for the optimal operation of increasingly expanding large-scale cascaded reservoirs in China.
关键词
梯级水库群 /
优化调度 /
粗粒度 /
多核并行 /
Fork/Join /
粒子群算法
Key words
cascaded reservoirs /
optimal operation /
coarse-grain /
multi-core parallel /
Fork/Join /
particle swarm optimization algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭生练,陈炯宏,刘 攀,等. 水库群联合优化调度研究进展与展望[J]. 水科学进展,2010,21(4):496-503.
[2] LABADIE J W. Optimal Operation of Multireservoir Systems: State-of-the-art Review[J]. Journal of Water Resources Planning and Management, 2004, 130(2): 93-111.
[3] 刘心愿,朱永辉,郭小虎,等. 水库多目标优化调度技术比较研究[J]. 长江科学院院报,2015,32(7):9-14.
[4] 陈 瑞,陈求稳,陈 进. 基于改进遗传算法的生态友好型水库调度[J]. 长江科学院院报,2012,29(3):1-6.
[5] 罗军刚,张 晓,解建仓. 基于量子多目标粒子群优化算法的水库防洪调度[J]. 水力发电学报,2013,32(6):69-75.
[6] 冯雁敏,张雪源,梁年生. 松江河梯级水电站短期优化调度数学模型分析[J]. 长江科学院院报,2012,29(4):1-6.
[7] 张德发,周建中,卢 鹏,等. 变尺度混沌蜂群算法在梯级库群优化调度中的应用[J]. 水电能源科学,2014,32(4):46-50.
[8] 原文林, 曲晓宁. 混沌蚁群优化算法在梯级水库发电优化调度中的应用研究[J]. 水力发电学报, 2013, 32(3): 47-54.
[9] 王丽萍,孙 平,蒋志强,等. 并行多维动态规划算法在梯级水库优化调度中的应用[J]. 水电能源科学,2015,33(4):43-47.
[10]张忠波,吴学春,张双虎,等. 并行动态规划和改进遗传算法在水库调度中的应用[J]. 水力发电学报,2014,33(4):21-27.
[11]王 森,武新宇,程春田,等. 自适应混合粒子群算法在梯级水电站群优化调度中的应用[J]. 水力发电学报,2012,31(1):38-44.
[12]LEA D. A Java Fork/Join Framework[C]∥Proceedings of the ACM 2000 Conference on Java Grande. San Francisco, California, June 3-5, 2000:36-43.
[13]蒋志强,纪昌明,孙 平,等. 多层嵌套动态规划并行算法在梯级水库优化调度中的应用[J]. 中国农村水利水电,2014,9(9):70-75.
基金
国家重点研发计划资助项目(2017YFC0405905);水利部公益性行业科研专项(201401013,201501010)