为了分析来水不确定性导致的水电站发电风险,构建了日径流随机模拟模型,模拟生成了长系列径流序列,建立常规调度和优化调度模型,并将模拟径流序列作为输入驱动调度模型。以年均发电量、发电稳定性、弃水量、发电保证率、蓄满率为主要风险指标,建立了发电风险分析的指标体系。在此基础上,以三峡水库作为调度模型的研究实例,比较了常规调度和优化调度的风险水平。结果表明:优化调度较常规调度年发电量增加约5%;信息熵结果显示优化调度模型不确定性较小,更加稳定;优化调度弃水量约为常规调度的50%,且优化调度降低了出力破坏风险。文中给出的优化调度模型所得调度过程在经济效益及风险控制方面都有较优的表现。
Abstract
Stochastic modeling of daily runoff is constructed to analyze the power generation risks of hydropower stations caused by the uncertainty of inflow. Simulated long-term runoff series are used as input data of the model to compare regular scheduling and optimized scheduling. A risk analysis system consisting annual average power generation, power generation stability, water abandonment, power generation guarantee rate, and full storage rate as major risk indexes is established. The Three Gorges Reservoir is taken as an example to compare the risk level of power generation between regular scheduling and optimized scheduling. Results show that the annual mean power generation in optimized scheduling increases by about 5% compared with that of regular scheduling. The calculated entropy values imply that the uncertainty of optimized scheduling model is much smaller and more stable. The abandoned water amount in optimized scheduling is about 50% of that in regular scheduling. In addition, the risk is reduced in optimized scheduling model. The scheduling process derived from the optimized scheduling model in this paper has better performance in economic benefits and risk control.
关键词
径流随机模拟 /
常规调度 /
优化调度 /
发电风险 /
三峡水库
Key words
runoff stochastic simulation /
regular scheduling /
optimization scheduling /
hydropower generation risk /
Three Gorges Reservoir
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐 志, 马 静, 贾金生, 等. 水能资源开发利用程度国际比较[J].水利水电科技进展, 2018,38(1):63-67.
[2] 国家能源局. 水电发展“十三五”规划[Z].北京:国家能源局, 2016.
[3] 许继军, 陈 进, 尹正杰, 等. 长江流域梯级水库群联合调度关键问题研究[J]. 长江科学院院报, 2011, 28(12):48-52.
[4] 覃 晖, 李清清, 周建中. 基于相对优势度的水库防洪调度多属性风险决策方法研究[J]. 长江科学院院报, 2011, 28(12):58-63.
[5] 李继清, 张玉山, 王丽萍, 等. 应用最大熵原理分析水利工程经济效益的风险[J].水科学进展, 2003, 14(5):626-630.
[6] 李继清, 张玉山, 王丽萍, 等. 市场环境下水电站发电风险调度问题研究[J].水力发电学报, 2005, 24(5):1-6, 109.
[7] 钟平安, 唐 林, 张梦然. 水电站长期发电优化调度方案风险分析研究[J]. 水力发电学报, 2011, 30(1):40-43.
[8] 闫宝伟, 郭生练, 刘 攀, 等. 基于Copula函数的径流随机模拟[J]. 四川大学学报(工程科学版),2010, 42(1):5-9.
[9] SL 44—2006, 水利水电工程设计洪水计算规范[S].北京:中国水利水电出版社, 2006.
[10]赵国杰. 梯级水电站长期优化调度研究[D].天津:天津大学, 2004.
[11]鲍正风, 张雅琦, 刘志武. 三峡电站中长期发电计划计算方法研究[J].水利水电技术, 2011, 42(12):88-92.
[12]刘智敏. 扩展最大熵原理及其在不确定度中的应用[J].中国计量学院学报, 2010,21(1):1-4.
基金
国家自然科学基金重点项目(91547208);国家优秀青年科学基金项目(51922047);国家自然科学基金面上项目(51879109,51679094)