长江科学院院报 ›› 2025, Vol. 42 ›› Issue (3): 99-106.DOI: 10.11988/ckyyb.20231271

• 水灾害 • 上一篇    下一篇

基于FFA-GRNN模型的土石坝溃坝洪峰流量预测

严新军1,2(), 王雪虎1, 赵蕊婷1, 庄培源1, 王红徐1, 马俊玲1   

  1. 1 新疆农业大学 水利与土木工程学院,乌鲁木齐 830052
    2 新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052
  • 收稿日期:2023-11-17 修回日期:2024-04-28 出版日期:2025-03-01 发布日期:2025-03-01
  • 作者简介:

    严新军(1977-),男,新疆奇台人,副教授,硕士,主要从事土石坝溃坝相关研究。E-mail:

  • 基金资助:
    新疆维吾尔自治区重点研发任务专项(2022B03024-3); 新疆水利工程安全与水灾害防治重点实验室研究项目(ZDSYS-YJS-2022-09)

Predicting Peak Discharge at Earth Rock Dam Break Based on FFA-GRNN Model

YAN Xin-jun1,2(), WANG Xue-hu1, ZHAO Rui-ting1, ZHUANG Pei-yuan1, WANG Hong-xu1, MA Jun-ling1   

  1. 1 College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052,China
    2 Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention,Urumqi 830052, China
  • Received:2023-11-17 Revised:2024-04-28 Published:2025-03-01 Online:2025-03-01

摘要:

为提高溃坝洪峰流量预测精度,提出了一种基于GRNN的预测模型,结合耳廓狐优化算法FFA进行超参数优化,实现对溃坝洪峰流量的预测。以国内外堤坝溃决数据库为基础,用溃口底部以上库容、溃口底部以上水深和溃口深度3种因子作为输入变量,构建FFA-GRNN溃坝洪峰流量预测模型。为验证模型在溃坝洪峰流量预测精确度和拟合度,与其他4种智能算法进行对比。结果表明:提出的FFA-GRNN模型相较于其他模型具有更低的RMSE、MAE和更高的拟合度R2,证明所建模型在整体上具有更好的计算精度与拟合效果。通过分析模型在溃坝洪峰流量预测中的适用性,可为溃坝分析提供技术支撑。

关键词: 溃坝, 洪峰流量, 土石坝, 耳廓狐算法, 广义回归神经网络

Abstract:

The accuracy of predicting the peak flood flow at the breach of earth-rock dam is crucial for dam break analysis. To improve the prediction accuracy of the post-breach peak flood flow, this paper presents a prediction model based on the General Regression Neural Network (GRNN), optimized by the Fennec Fox Optimization (FFA) algorithm for hyperparameters, to forecast the peak flood flow caused by dam breaches. Using a database of domestic and international dam failure cases, the model selects three factors as input variables: the reservoir capacity above the breach bottom, the water depth above the breach bottom, and the breach depth, to build the FFA-GRNN prediction model. To evaluate the model’s precision and fitting accuracy in predicting peak flood discharge at dam break, we compared it with four other intelligent algorithms. Results show that the proposed FFA-GRNN model has a lower Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and a higher coefficient of determination (R2) than other models, indicating superior computational precision and fitting performance.

Key words: dam break, peak discharge, earth-rock dam, Fennec Fox Algorithm, Generalized Regression Neural Network

中图分类号: