长江科学院院报

• •    下一篇

基于FFA-GRNN模型的土石坝溃坝洪峰流量预测

严新军1,2(), 王雪虎1, 赵蕊婷1, 庄培源1, 王红徐1, 马俊玲1   

  1. 1.新疆农业大学 水利与土木工程学院,乌鲁木齐 830052
    2.新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052
  • 收稿日期:2023-11-20 修回日期:2024-04-25 出版日期:2024-05-23
  • 作者简介:严新军(1977—),男,新疆奇台人,副教授,硕士,研究方向为土石坝溃坝相关研究。E-mail:xjndyxj@163.com
  • 基金资助:
    自治区重点研发任务专项项目(2022B03024-3);新疆水利工程安全与水灾害防治重点实验室研究项目(ZDSYS-YJS-2022-09)

Prediction of Earth-Rock Dam Breach Peak Outflow Based on the FFA-GRNN Model

YAN Xin-jun1,2(), WANG Xue-hu1, ZHAO Rui-ting1, ZHUANG Pei-yuan1, WANG Hong-xu1, MA Jun-ling1   

  1. 1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052,China
    2. Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
  • Received:2023-11-20 Revised:2024-04-25 Published:2024-05-23

摘要: 土石坝溃坝洪峰流量预测精度对于溃坝分析的结论具有决定性意义。为提高溃坝洪峰流量预测精度,本文提出了一种基于GRNN的预测模型,结合耳廓狐优化算法FFA进行超参数优化,实现对溃坝洪峰流量的预测。以国内外堤坝溃决数据库为基础,用溃口底部以上库容、溃口底部以上水深和溃口深度三种因子作为输入变量,构建FFA-GRNN溃坝洪峰流量预测模型。为验证模型在溃坝洪峰流量值预测精确度和拟合度,与其他四种智能算法进行对比验证。结果表明:本文提出的FFA-GRNN模型相较于其他模型具有更低的RMSE(592)、MAE(995)和更高的拟合度R2(0.973),证明所建模型在整体上具有更好的计算精度与拟合效果。通过分析模型在溃坝洪峰流量预测中的适用性,可为溃坝分析提供技术支撑。

关键词: 溃坝, 洪峰流量, 土石坝, 耳廓狐算法, 广义回归神经网络

Abstract:

The accuracy of the peak flood flow prediction for earth-rock dam breaches is of decisive significance for the conclusions of dam break analysis. To enhance the prediction accuracy of the peak flood flow following a dam breach, this paper introduces a prediction model based on General Regression Neural Network (GRNN), coupled with Fennec Fox Optimization (FFA) for hyperparameter optimization, to forecast the peak flood flow resulting from dam breaches. Utilizing a database of domestic and international dam failure incidents, the model employs three factors as input variables: the reservoir capacity above the breach bottom, the water depth above the breach bottom, and the breach depth, to construct the FFA-GRNN dam break peak flood flow prediction model. To assess the precision and fitting accuracy of the model in predicting peak flood flow values, a comparative verification was conducted against four other intelligent algorithms. The results indicate that the proposed FFA-GRNN model exhibits a lower RMSE (592), MAE (995), and a higher coefficient of determination R2 (0.973) in comparison to other models, demonstrating superior computational precision and fitting performance overall. By analyzing the applicability of the model in predicting dam breach peak flood flows, it can provide technical support for dam break analysis.

Key words: dam break, peak outflow, earth-rock dam, Fennec Fox Algorithm, Generalized Regression Neural Network

中图分类号: