长江科学院院报 ›› 2023, Vol. 40 ›› Issue (7): 88-95.DOI: 10.11988/ckyyb.20220061

• 农业水利 • 上一篇    下一篇

基于天地协同与深度学习的灌区地下水位模拟

陈文龙1, 杨云丽1, 张煜2, 胡祖康3   

  1. 1.江苏省规划设计集团有限公司, 南京 210036;
    2.长江科学院 农业水利研究所, 武汉 430010;
    3.河海大学 计算机与信息学院, 南京 210024
  • 收稿日期:2022-01-18 修回日期:2022-04-28 出版日期:2023-07-01 发布日期:2023-07-12
  • 通讯作者: 张 煜(1971-),男,湖北武汉人,正高级工程师,博士,研究方向为摄影测量与遥感。E-mail:zhangyu_1999@126.com
  • 作者简介:陈文龙(1989-),男,四川绵阳人,工程师,硕士,研究方向为空间信息与机器学习。E-mail:cowerling@163.com
  • 基金资助:
    云南省高分三期水利应用课题(89-Y50G31-9001-22/23-05);国家重点研发计划项目(2018YFC1508302)

Simulation of Groundwater Level in Irrigation Area Based on Sky-Earth Cooperation and Deep Learning

CHEN Wen-long1, YANG Yun-li1, ZHANG Yu2, HU Zu-kang3   

  1. 1. Jiangsu Provincial Planning and Design Group,Nanjing 210036, China;
    2. Agrucultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China;
    3. College of Computer and Information, Hohai University, Nanjing 210024, China
  • Received:2022-01-18 Revised:2022-04-28 Online:2023-07-01 Published:2023-07-12

摘要: 为了探究天地协同与深度学习的联合效果,利用灌区地面和遥感的天地协同序列观测数据,以降水、土壤湿度、地下水位历史观测量、哨兵-2遥感观测值作为地下水位的模拟因子,采用基于多层GRU网络的深度学习模型建立地面和遥感观测因子与地下水位的内在联系,进行灌区地下水位模拟的研究,并在南北方两处灌区研究区进行地下水位模拟试验和结果分析。试验结果表明,基于天地协同与深度学习的灌区地下水位模拟模型具有自行建立外界环境因素和灌区地下水位内在关系的能力,明显优于仅有地下水位观测值作为模拟因子的对比模型,具有较好的地下水位模拟效果,以及在不同地理环境下的模型适用性。该模型具有一定的应用潜力,能够为灌区的农作物种植和水资源管理提供决策信息支持。

关键词: 地下水位模拟, 深度学习, 天地协同, 灌区, 遥感

Abstract: In this study, we aim to simulate the groundwater level in irrigation area by utilizing sequential observation data from ground-based and remote sensing platforms. A deep learning model based on a multi-layer GRU network was developed for this purpose. Precipitation, soil moisture, historical measurements of groundwater levels, and Sentinel-2 remote sensing observations were used as simulation factors. Furthermore, groundwater level simulation experiments and result analyses are conducted for two irrigation areas located in North and South China. The experimental findings reveal that the groundwater level simulation model, which incorporates the synergy between sky-earth observations and deep learning, effectively establishes the intrinsic relationship between external environmental factors and groundwater levels within the irrigation area. The model is apparently superior to comparative models that merely considers groundwater level as it demonstrates impressive simulation performance, exhibits applicability in diverse geographical environments, and holds promising potential for practical applications. It can provide valuable decision-making support for crop cultivation and water resources management in irrigation area.

Key words: groundwater level simulation, deep learning, sky-earth cooperation, irrigation area, remote sensing

中图分类号: