为了提高地铁隧道表面裂缝识别的精度,基于深度学习和机器视觉技术,提出了一种考虑存在遮挡物情况下的地铁盾构隧道裂缝识别与特征提取算法,利用卷积神经网络实现了基于图像修复技术的裂缝特征提取,从而得到了更准确的裂缝信息。首先提出了一种基于U-net网络的地铁隧道管片表面的遮挡物分割方法,用标记出其位置信息;然后以VGG-16为特征提取网络,并搭建Faster R-CNN网络模型,对隧道管片图像中的裂缝进行定位和标记;最后结合二者识别结果可判断出裂缝与遮挡物之间的关系。针对裂缝被遮挡的情况并结合隧道管片图像的特点,提出了一种可修复被遮挡的裂缝信息的网络模型。结果表明采用该裂缝识别与特征提取方法,修复被遮挡的裂缝信息的准确率可达90%,在实际隧道病害检测与综合评估中具有应用价值。
Abstract
To enhance the accuracy of identifying surface cracks in subway tunnels, we propose an algorithm for recognizing and extracting crack features in subway shield tunnels taking into account the presence of obstructions based on deep learning and machine vision technology. We employed the convolution neural network to extract the features of cracks using image restoration technology, thereby obtaining accurate information on the cracks. First, we proposed a U-net-based method of segmenting the occlusions on the subway tunnel segment surface, marking the position information by a mask map. Then, we built a Faster R-CNN network model using VGG-16 as the feature extraction network to locate and mark the cracks in the tunnel segment image. By combining the results of the two, we can determine the relationship between the cracks and occlusions. Finally, we proposed the deep learning convolution neural network model in which the occluded crack information can be restored. The trained network model can predict the cracks in the occluded area. The experimental results demonstrate that the accuracy rate of the proposed method reaches 90% in repairing the occluded crack information, indicating its application value in actual tunnel disaster detection and comprehensive evaluation.
关键词
盾构隧道 /
表面裂缝识别 /
特征提取 /
深度学习 /
机器视觉技术 /
图像修复
Key words
shield tunnel /
surface crack identification /
feature extraction /
deep learning /
machine vision technology /
image restoration
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 田时沫, 鲁 放, 杨 珂, 等. 2017年中国城市轨道交通运营线路统计与分析[J]. 都市快轨交通, 2018, 31(1): 16-20.
[2] 朱力强, 王春薇, 王耀东, 等. 基于特征点集距离描述的裂缝图像匹配算法研究[J]. 仪器仪表学报, 2016, 37(12): 2851-2858.
[3] ATTARD L, DEBONO C J, VALENTINO G,et al. Vision-Based Change Detection for Inspection of Tunnel Liners[J]. Automation in Construction, 2018, 91: 142 - 154.
[4] 周丽军,刘 晓.基于分数阶傅里叶变换的隧道低对比度裂缝检测[J]. 计算机科学,2019,46(增刊1):208-210.
[5] 蒲炳荣, 漆泰岳, 黄晓东, 等. 隧道衬砌分岔裂缝特征提取研究[J]. 铁道标准设计, 2019, 63(10): 135-141.
[6] 张振海, 尹晓珍, 王阳萍, 等. 基于特征分析的图像式地铁隧道裂缝检测方法研究[J]. 铁道科学与工程学报, 2019, 16(11): 2791-2800.
[7] 王 睿, 漆泰岳, 万 宇, 等. 基于机器视觉的高铁隧道衬砌裂缝骨架拐点识别[J]. 地下空间与工程学报, 2020, 16(2): 524-530.
[8] ZHANG L, YANG F, ZHANG Y D, et al. Road Crack Detection Using Deep Convolutional Neural Network[C]//2016 IEEE International Conference on Image Processing (ICIP). September 25-28, 2016, Phoenix, AZ, USA. New York: IEEE Press, 2016: 3708-3712.
[9] CHA Y J, CHOI W,BÜYÜKÖZTÜRK O. Deep Learning-based Crack Damage Detection Using Convolutional Neural Networks[J]. Computer-aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378.
[10] CHEN F C, JAHANSHAHI M R. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Nave Bayes Data Fusion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4392-4400.
[11] 薛亚东, 李宜城. 基于深度学习的盾构隧道衬砌病害识别方法[J]. 湖南大学学报(自然科学版), 2018, 45(3): 100-109.
[12] 刘洪公, 王学军, 李冰莹, 等. 基于卷积神经网络的桥梁裂缝检测与识别[J]. 河北科技大学学报, 2016, 37(5): 485-490.
[13] 刘新根, 陈莹莹, 朱爱玺, 等. 基于深度学习的隧道裂缝识别方法[J]. 广西大学学报(自然科学版), 2018, 43(6): 2243-2251.
[14] 柴雪松, 朱兴永, 李健超, 等. 基于深度卷积神经网络的隧道衬砌裂缝识别算法[J]. 铁道建筑, 2018, 58(6): 60-65.
[15] 黄宏伟, 李庆桐. 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36(12): 2861-2871.
[16] 吴贺贺, 王安红, 王海东. 基于Faster R-CNN的隧道图像裂缝检测[J]. 太原科技大学学报, 2019, 40(3): 165-168.
[17] RONNEBERGER O,FISCHER P, BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany. October 5-9, 2015: 234-241.
[18] SHELHAMER E, LONG J, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. May 24, 2016, New York: IEEE Press, 2016: 640-651.
[19] 金 飞, 王龙飞, 刘 智, 等. 一种双U-net的遥感影像道路提取方法[J]. 测绘科学技术学报, 2019, 36(4): 377-381, 387.
[20] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[21] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10)[2021-11-28]. https://arxiv.org/abs/1409.1556.
[22] PADILLA R, NETTO S L, DA SILVA E A B. A Survey on Performance Metrics for Object-Detection Algorithms[C]//2020 International Conference on Systems, Signals and Image Processing (IWSSIP). July 1-3, 2020, Niteroi, Brazil. New York: IEEE Press, 2020: 237-242.
基金
云南省重大科技专项计划项目(202002AF080003);国家重点研发计划项目(2016YFC0401803)