长江科学院院报 ›› 2012, Vol. 29 ›› Issue (4): 11-16.

• 水资源与环境 • 上一篇    下一篇

岩溶地区径流预报中BP网络的改进

 王文梅1, 孙蓉琳1, 高岩2   

  1. 1.中国地质大学 环境学院, 武汉  430074; 2.贵州大学 资源与环境工程学院,贵阳  550003
  • 收稿日期:2011-07-01 出版日期:2012-04-01 发布日期:2012-06-15
  • 通讯作者: 孙蓉琳(1979-),女,湖北武汉人,副教授,主要从事地下水资源管理和裂隙岩体地下水渗流模拟研究
  • 作者简介:王文梅(1986-),女,重庆市人,硕士研究生,主要从事地下水量预报、地下水溶质运移和渗流的研究
  • 基金资助:

    贵州大学自然科学青年科研基金(贵大自青基合字(2009)073号)

Modified BP Neural Network for Runoff Forecasting in the Karst Area

 WANG  Wen-Mei1, SUN  Rong-Lin1, GAO  Yan2   

  1. 1. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;2. School of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, China
  • Received:2011-07-01 Online:2012-04-01 Published:2012-06-15

摘要: 岩溶地区下垫面复杂,各种岩溶管道、裂隙、溶洞发育使得流域不闭合,地下暗河存在水量交换,而地下水库的调蓄作用,使得流域出口断面总流量与降雨量不成绝对的线性关系。为了克服上述问题带来的岩溶地区降雨径流预报精度低问题,提出了改进的BP网络方法,并通过实例验证了此方法的可行性。以六冲河七星关站断面以上流域的平均日降水量、平均日蒸发量、前期流量作为影响因子,建立了2种预报模型:①传统BP网络模型;②运用SPASS软件筛选BP的影响因子数和调整输入层初始权值,并对逐日径流量资料进行对数处理建立改进的BP网络模型。通过实例分析发现改进的BP网络模型预报效果更好,可以有效地提高大洪峰和小洪峰的预报精度。

关键词: BP网络, 径流预报, 岩溶, 对数处理

Abstract: Complex landforms in Karst area such as Karst pipes, fissures and Karst caves leads to unclosed valley and ground water exchange. The total flow at the outlet section is not in absolute linear relation with precipitation owing to the storage adjustment of groundwater reservoir. To overcome the low precision of rainfall runoff forecasting, we established a conventional BP network model and a modified BP network model for runoff forecasting. The average daily precipitation, average daily evaporation, and  runoff in the earlier stage in the basin upstream of Qixingguan Station at Liuchonghe basin were taken as influencing factors. In the modified model, SPASS software was employed to select the influencing factor numbers and adjust the initial weights in the input layer. Logarithm processing is also performed to deal with daily runoff data. It’s found that the modified BP model can increase the precision of large flood and small flood forecasting.

Key words: BP neural network, runoff forecasting, the Karst area, logarithm processing

中图分类号: