为探求下伏岩溶对桩基承载特性的影响规律,基于现场静载荷试验,采用FLAC3D有限差分软件对5种溶洞顶板厚度、5种顶板跨度、5种溶洞高度以及3类顶板围岩类别进行正交数值模拟试验。试验结果表明:其他条件一定时,桩基承载力与岩溶顶板厚度、顶板围岩强度成正比,与岩溶顶板跨度成反比,与溶洞高度无直接影响;溶洞等软弱下卧层对上方桩基的最大影响深度为3倍桩径,继续增大顶板厚度对桩基极限承载力的提高效果不大;溶洞尺寸与桩径相仿(L≤2D)时,对桩基承载力影响不大,溶洞尺寸继续增大则极限承载力有较明显下降;岩体强度在11.5 MPa以下时,承载力随岩体强度的增大有较大的提高,岩体强度达到11.5 MPa以后,继续增大岩体强度,其承载力增幅不明显。研究结果可进一步深化、完善现行的岩溶发育区桩基础的设计并指导施工,具有一定的理论意义及工程应用价值。
Abstract
To investigate the influence of underlying karst on pile foundation’s bearing capacity, orthogonal tests were simulated in FLAC3D under different karst conditions—five different thicknesses and widths of karst roof, five different heights of karst cave, and three different types of surrounding rock—based on field static load test. Results demonstrated that given the same other circumstances, the bearing capacity of pile foundation is directly proportional to the thickness of cave roof and strength of surrounding rocks, inversely proportional to the width of cave roof, and has no direct relation with cave height. Karst caves and other weak substratum affects the upper pile foundation within a depth maximum to three times pile diameter. Further increasing the thickness of cave roof has little effect on improving the ultimate bearing capacity of pile foundation. Cave size has little effect on pile’s bearing capacity when cave size is close to pile diameter(L≤2D), but reduces the ultimate bearing capacity evidently when cave size continues to grow. The bearing capacity grows apparently with the increase of rock mass strength when the strength is below 11.5 MPa, but the growth is not obvious when the strength is over 11.5 MPa.
关键词
桩基 /
承载特性 /
下伏岩溶 /
有限差分法 /
静载试验 /
正交数值试验
Key words
pile foundation /
bearing capacity /
underlying karst /
finite difference method /
static load test /
orthogonal numerical test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 康厚荣. 岩溶地区公路修筑理论与实践. 北京:人民交通出版社, 2006.
[2] 赵明华,邹新军,刘齐建. 洞庭湖软土地区大直径超长灌注桩竖向承载力试验研究. 土木工程学报,2004,37(10):63-67.
[3] 赵明华,雷 勇,刘晓明. 基于桩–岩结构面特性的嵌岩桩荷载传递分析. 岩石力学与工程学报,2009,28(1):103-110.
[4] WU Wen-bin, WANG Kui-hua, ZHANG Zhi-qin. A New Approach for Time Effect Analysis of Settlement for Single Pile Based on Virtual Soil-pile Model. Journal of Central University, 2012, 19(9): 2656-2662.
[5] 江 杰,陈 骏,肖 萌,等. 南宁软岩地基大直径灌注桩极限承载力预测. 长江科学院院报,2017,34(12): 73-77.
[6] 赵明华,周 磊,雷 勇. 基于H-B强度理论的桩端岩层安全厚度确定. 湖南大学学报(自然科学版),2010,37(6): 1-5.
[7] 曹文贵,李 媛,翟友成. 基于Info-Gap理论的基桩下伏岩溶顶板稳定性的主动分析方法. 岩石力学与工程学报,2013,32(2):393-400.
[8] 蒋建平,章杨松,高广运. 基于现场试验的超长桩端阻力承载性状研究. 工程力学,2010,27(2):149-160.
[9] 曹文贵,程 晔,赵明华. 公路路基岩溶顶板安全厚度确定的数值流形方法研究. 岩土工程学报,2005,27(6): 621-625.
[10] 赵明华,蒋 冲,曹文贵. 岩溶区嵌岩桩承载力及其下伏溶洞顶板安全厚度的研究. 岩土工程学报,2007,29(11): 1618-1622.
[11] 黄生根,梅世龙,龚维明. 南盘江特大桥岩溶桩基承载特性的试验研究. 岩石力学与工程学报,2004,23(5): 809-813.
[12] 刘铁雄. 岩溶顶板与桩基作用机理分析与模拟试验研究. 长沙:中南大学, 2003.
[13] JGJ 106—2003,建筑桩基检测技术规范. 北京:中国建筑工业出版社, 2003.
[14] HOEK E, BROWN E T. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences,1997, 34(8): 1165-1186.