以晋祠泉域为例,在泉域驱动因素的基础上,将泉域岩溶水系统概化为一个多输入-双输出的系统,输入项为当年及前7 a的降水、岩溶水开采量和采煤排水量;输出项为晋祠泉总排泄量,即出流量和侧排量。然后采用多元线性回归和BP神经网络2种随机模型,建立泉域各输出项与各输入项的关系,再假定无岩溶水开采和无采煤排水2种情景,在这2种情景下模拟泉域的排泄量,对比分析采煤和岩溶水开采对晋祠泉出流量的影响。研究结果表明采用多元线性回归模型,在1956—1994年多年平均条件下,岩溶水开采后晋祠泉排泄量减少0.42 m3/s,采煤排水后出流量减少0.23 m3/s,人类开采使总排泄量减少0.65 m3/s;采用BP神经网络模型,1956—1994年多年平均条件下,岩溶水开采后泉域排泄量减少0.30 m3/s,采煤排水后出流量减少0.27 m3/s,人类开采使总排泄量减少0.65 m3/s。20世纪80年代后采煤活动加剧,2种随机模型均反映出采煤排水对泉域有严重的影响。
Abstract
In an attempt to explore the influence of coal mining and karst water exploitation on Jinci spring, the discharges in spring area are simulated by multiple linear regression model and back propagation (BP) neural network model under two scenarios (in the absence of karst water exploitation and in the absence of coal mining drainage, respectively) for comparison. In line with the study area’s driving factors, the Jinci spring area is generalized as a multi-input system with dual output. Precipitation, karst water exploitation amount, and coal mining drainage amount in the current year and previous seven years are selected as input; the total discharge of Jinci spring, inclusive of outflow and side discharge, is taken as output. The relations between each input and output are established. Under the annual average conditions of 1956-1994, 1) the results of multiple linear regression model manifest that karst water exploitation had reduced the discharges of Jinci spring area by 0.42 m3/s, coal mining had cut the outflow by 0.23 m3/s, in total of 0.65 m3/s; 2) while the results of BP neural network model shows that karst water exploitation reduced the discharges by 0.30 m3/s,coal mining by 0.27 m3/s,and the total influence was 0.65 m3/s, which was nonlinear. Both stochastic models reflected severe impact of coal mining on Jinci spring area since coal mining and karst water exploitation exacerbated after the 1980s.
关键词
晋祠泉总排泄量 /
多元线性回归 /
BP神经网络 /
采煤排水 /
岩溶水开采
Key words
total discharge of Jinci spring /
multiple linear regression /
BP artificial neural network /
drainage of coal mining /
karst water exploitation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]雒 征,胡彩虹,郝永红.岩溶泉水的研究现状与进展.水资源与水工程学报,2005,16(1):56-60.
[2]董志高,黄 勇.地下水动态预测模型综述.西部探矿工程,2002,(4):36-38.
[3]陈葆仁,洪再吉,汪福炘.地下水动态及其预测.北京:科学出版社,1988:93-108.
[4]梁俊勋.地下水动态的灰色预测.地下水,1992,14(1):7-9.
孙才志,宫辉力.山西晋祠泉复流时间的人工神经网络预测.山地学报,2001,19(4):372-376.
[5]薛凤海,武桂梅,李砚阁.太原市地下水合理利用与调控.郑州:黄河水利出版社,2000:10-52.
孙才志,王金生,林学钰.山西晋祠泉在引水条件下的可再生性研究.中国岩溶,2001,20(1):11-16.
[6]殷 丹,苏小四,李砚阁,等.ANN技术在岩溶地下水可开采量评价中的应用——以山西晋祠泉域为例.吉林大学学报(地球科学版),2006,36(11):55-59.
[7]殷 丹.山西省晋祠泉复流条件研究.长春:吉林大学,2007:20-24.
[8]杜 斌.太原市西山岩溶区汾河与地下水相互作用研究.太原理工大学学报,2010,41(3):272-276.
[9]汪华斌,徐瑞春.BP神经网络在鱼洞河滑坡稳定性评价中的应用.长江科学院院报,2002,19(4): 62 -64.
[10]崔东文.基于改进BP神经网络模型的云南文山州水资源脆弱性综合评价.长江科学院院报,2013,30(3):1-7.
[11]闻 新,周 露,王丹力,等.MATLAB神经网络应用设计.北京:科学出版社,2001.
[12]万 臣,李建峰,赵 勇,等.基于新维BP神经网络-马尔可夫链模型的大坝沉降预测.长江科学院院报,2015,32(10):23-27.