长江科学院院报 ›› 2019, Vol. 36 ›› Issue (10): 89-93.DOI: 10.11988/ckyyb.20190868

• 堤防工程安全运行与监测预警 • 上一篇    下一篇

基于正交试验和神经网络的堤防边坡抗滑稳定可靠度研究

王小兵, 夏晓舟, 章青   

  1. 河海大学 力学与材料学院,南京 211100
  • 收稿日期:2019-07-23 出版日期:2019-10-01 发布日期:2019-10-21
  • 通讯作者: 章 青(1963-),男,安徽铜陵人,教授,博士,主要从事工程结构灾变破坏分析与安全保障研究。E-mail:lxzhangqing@hhu.edu.cn
  • 作者简介:王小兵(1987-),男,河南漯河人,博士研究生,主要从事水工结构可靠度及风险评价研究。E-mail:398152420@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFC1502603);中央高校基本科研业务费专项(2019B65814);江苏省研究生科研创新计划项目(SJKY19_0422)

Reliability Analysis on Anti-sliding Stability of Levee SlopeBased on Orthogonal Test and Neural Network

WANG Xiao-bing, XIA Xiao-zhou, ZHANG Qing   

  1. College of Mechanics and Materials,Hohai University,Nanjing 211100,China
  • Received:2019-07-23 Online:2019-10-01 Published:2019-10-21

摘要: 对于功能函数不能显式表达的边坡类等复杂结构,不方便采用传统的可靠度理论计算其失效概率,因而采用BP神经网络模型代替边坡失效的隐式函数,通过神经网络强大的非线性拟合能力进而构造边坡抗滑稳定可靠度分析的功能函数,并结合蒙特卡洛方法计算边坡抗滑稳定的失效概率。采用正交试验选取网络训练所需的样本点,利用有限元强度折减法计算样本点的抗滑稳定安全系数。通过算例研究了以内摩擦角和黏聚力为随机变量的堤防边坡抗滑稳定的失效概率,验证了该方法操作的简便性与结果的合理性。

关键词: 堤防边坡, 抗滑稳定, 可靠度分析, 正交试验, BP神经网络, 蒙特卡洛法, 失效概率

Abstract: It is not convenient to calculate failure probability using traditional reliability theory for complex structures such as levee slope whose performance function cannot be explicitly expressed. In this paper, neural network model is used to replace the performance function of slope and the Monte-Carlo method is used to calculate the failure probability. The samples for training network are generated through orthogonal trial, and the safety factors of the samples are calculated by the strength reduction method of finite element method (FEM). The failure probability is calculated by constructing performance function by using the strong non-linear fitting ability of neural network. Through an example calculation, the failure probability of levee slope is studied with internal friction angle, cohesion force and elastic modulus as random variables. This method is proved to be simple and reasonable.

Key words: levee slope, anti-sliding stability, reliability analysis, orthogonal trial, BP neural network, Monte-Carlo method, failure probability

中图分类号: